千文網(wǎng)小編為你整理了多篇相關的《考研數(shù)學證明題答題詳解(合集)》,但愿對你工作學習有幫助,當然你在千文網(wǎng)還可以找到更多《考研數(shù)學證明題答題詳解(合集)》。
第一篇:考研數(shù)學復習高數(shù)必考題型
1.求極限
無論數(shù)學一、數(shù)學二還是數(shù)學三,求極限是高等數(shù)學的基本要求,所以也是每年必考的內(nèi)容。區(qū)別在于有時以4分小題形式出現(xiàn),題目簡單;有時以大題出現(xiàn),需要使用的方法綜合性強。比如大題可能需要用到等價無窮小代換、泰勒展開式、洛比達法則、分離因式、重要極限等幾種方法,有時考生需要選擇多種方法綜合完成題目。另外,分段函數(shù)在個別點處的導數(shù),函數(shù)圖形的漸近線,以極限形式定義的函數(shù)的連續(xù)性、可導性的研究等也需要使用極限手段達到目的,須引起注意!
2.利用中值定理證明等式或不等式,利用函數(shù)單調性證明不等式
證明題雖不能說每年一定考,但也基本上十年有九年都會涉及。等式的證明包括使用4個常見的微分中值定理(即羅爾中值定理、拉格朗日中值定理、柯西中值定理、泰勒中值定理),1個定積分中值定理;不等式的證明有時既可使用中值定理,也可使用函數(shù)單調性。這里泰勒中值定理的使用時的一個難點,但考查的概率不大。
3.一元函數(shù)求導數(shù),多元函數(shù)求偏導數(shù)
求導數(shù)問題主要考查基本公式及運算能力,當然也包括對函數(shù)關系的處理能力。一元函數(shù)求導可能會以參數(shù)方程求導、變限積分求導或應用問題中涉及求導,甚或高階導數(shù);多元函數(shù)(主要為二元函數(shù))的偏導數(shù)基本上每年都會考查,給出的函數(shù)可能是較為復雜的顯函數(shù),也可能是隱函數(shù)(包括方程組確定的隱函數(shù))。
另外,二元函數(shù)的極值與條件極值與實際問題聯(lián)系極其緊密,是一個考查重點。極值的充分條件、必要條件均涉及二元函數(shù)的偏導數(shù)。
4.級數(shù)問題
常數(shù)項級數(shù)(特別是正項級數(shù)、交錯級數(shù))斂散性的判別,條件收斂與絕對收斂的本質含義均是考查的重點,但常常以小題形式出現(xiàn)。函數(shù)項級數(shù)(冪級數(shù),對數(shù)一的考生來說還有傅里葉級數(shù),但考查的頻率不高)的收斂半徑、收斂區(qū)間、收斂域、和函數(shù)等及函數(shù)在一點的冪級數(shù)展開在考試中常占有較高的分值。
5.積分的計算
積分的計算包括不定積分、定積分、反常積分的計算,以及二重積分的計算,對數(shù)一考生來說常主要是三重積分、曲線積分、曲面積分的計算。這是以考查運算能力與處理問題的技巧能力為主,以對公式的熟悉及空間想象能力的考查為輔的。需要注意在復習中對一些問題的靈活處理,例如定積分幾何意義的使用,重心、形心公式的使用,對稱性的使用等。
6.微分方程
解常微分方程方法固定,無論是一階線性方程、可分離變量方程、齊次方程還是高階常系數(shù)齊次與非齊次方程,只要記住常用形式,注意運算準確性,在考場上正確運算都沒有問題。但這里需要注意:研究生考試對微分方程的考查常有一種反向方式,即平常給出方程求通解或特解,現(xiàn)在給出通解或特解求方程。這需要考生對方程與其通解、特解之間的關系熟練掌握。
第二篇:考研數(shù)學沖刺階段的線代和概率復習
實際上對于線性代數(shù)來講是考研數(shù)學中比較容易拿分的部分,但是這門課程的難點就在于入門,入門的時候往往就讓很多考望而卻步了,但其實只要深入的進行學習就會無師自通,這門課由于思維上與高數(shù)南轅北轍所以一上來會很不適應,總體而言6章內(nèi)容環(huán)環(huán)相扣,所以很多同學一上來看第一章發(fā)現(xiàn)內(nèi)容涉及到第五章,看到第二章發(fā)現(xiàn)竟有第4章的知識點,無法形成完整的知識網(wǎng)絡,自然無法入門。這里在復習上就有技巧可續(xù),具體復習方法請大家往下看。
線性代數(shù)總共六章內(nèi)容我們可以分成三個部分進行復習,逐個進行突破比整體看待要容易很多。首先是行列式和矩陣,這里說的是第三第五和第六章,為什么要對這三個部分進行整體的復習呢,因為他們的內(nèi)容關聯(lián)性比較大,逐個突破,以兩章為一個單位。我們在復習的初期應該把每 個章節(jié)中出現(xiàn)的知識點和定理都整理出來記在筆記本上,找到他們彼此的關系,將知識點整體框架化。同學們在整理時可以以樹形圖的方式,最后根據(jù)每一個知識點各個擊破。第5章不用細看,第六章第七章主要是記憶,在記憶的基礎上盡可能的理解。浙大版的書上每章的課后題相當經(jīng)典,請同學們反復推敲,做過之后,再進行一遍總結,針對題型對應知識點進行復習和歸類。
這兩門課程的做題技巧完全體現(xiàn)在知識點的連貫性和總結基礎上,零散的看書完全達不到這些目的,只有看書也不能幫助你在這兩門課程上拿到好的成績。一定要在筆記整理方面下功夫,筆記的整理主要為了方便記憶,也是對知識點整理后的形象記憶法。最后根據(jù)這個大綱來一個各個擊破,講每個部分的內(nèi)容所出現(xiàn)的題型,一口氣做20道,在總結相應的思路,同時打開自己總結的筆記,來一個反饋。最好將自己的總結 筆記分成兩類,一類是知識點筆記,一類是題型思路歸納,這樣一來反饋學習效果更明顯,思路更清晰。
另外要學會發(fā)現(xiàn)和找到自身的短板和薄弱項,要知道自己哪里不會。那個題做錯了也是要注意的問題,錯了不能只知道正確答案就行,要知道哪里錯了為什么錯了。正確答題的思路是什么,只有這樣才能真正的了解到錯誤的意義,做題才沒有白做。這樣給自己接下來的學習指明方向,明白下一步應該復習哪里,針對哪里進行練習。
考研復習沖刺階段,同學們要注意安排有效的復習計劃,并按計劃安排執(zhí)行,這樣才能在時間緊的情況下完成繁重的復習任務,預祝大家考試順利。
第三篇:2015考研數(shù)學考前復習:16種求極限的方法
出國留學網(wǎng)考研數(shù)學頻道為大家提供2015考研數(shù)學考前復習:16種求極限的方法,大家可以參考一下,并把它運用的平時的考試中去!
2015考研數(shù)學考前復習:16種求極限的方法
各個章節(jié)本質上都是極限,是以函數(shù)的形式表現(xiàn)出來的,所以也具有函數(shù)的性質。函數(shù)的性質表現(xiàn)在各個方面:首先對極限的總結如下:極限的保號性很重要,就是說在一定區(qū)間內(nèi)函數(shù)的正負與極限一致。極限分為一般極限,還有個數(shù)列極限,(區(qū)別在于數(shù)列極限是發(fā)散的,是一般極限的一種)。
解決極限的方法如下:
1、等價無窮小的轉化,(只能在乘除時候使用,但是不是說一定在加減時候不能用,前提是必須證明拆分后極限依然存在,e的X次方-1或者(1+x)的a次方-1等價于Ax等等。全部熟記(x趨近無窮的時候還原成無窮小)。
2、洛必達法則(大題目有時候會有暗示要你使用這個方法)。首先他的使用有嚴格的使用前提!必須是X趨近而不是N趨近!(所以面對數(shù)列極限時候先要轉化成求x趨近情況下的極限,當然n趨近是x趨近的一種情況而已,是必要條件(還有一點數(shù)列極限的n當然是趨近于正無窮的,不可能是負無窮!)必須是函數(shù)的導數(shù)要存在!(假如告訴你g(x),沒告訴你是否可導,直接用,無疑于找死!!)必須是0比0無窮大比無窮大!當然還要注意分母不能為0。洛必達法則分為3種情況:0比0無窮比無窮時候直接用;0乘以無窮,無窮減去無窮(應為無窮大于無窮小成倒數(shù)的關系)所以無窮大都寫成了無窮小的倒數(shù)形式了。通項之后這樣就能變成第一種的形式了;0的0次方,1的無窮次方,無窮的0次方。對于(指數(shù)冪數(shù))方程方法主要是取指數(shù)還取對數(shù)的方法,這樣就能把冪上的函數(shù)移下來了,就是寫成0與無窮的形式了,(這就是為什么只有3種形式的原因,LNx兩端都趨近于無窮時候他的冪移下來趨近于0,當他的冪移下來趨近于無窮的時候,LNX趨近于0)。
3、泰勒公式(含有e的x次方的時候,尤其是含有正余弦的加減的時候要特變注意!)E的x展開sina,展開cosa,展開ln1+x,對題目簡化有很好幫助。
4、面對無窮大比上無窮大形式的解決辦法,取大頭原則最大項除分子分母!!!看上去復雜,處理很簡單!
5、無窮小于有界函數(shù)的處理辦法,面對復雜函數(shù)時候,尤其是正余弦的復雜函數(shù)與其他函數(shù)相乘的時候,一定要注意這個方法。面對非常復雜的函數(shù),可能只需要知道它的范圍結果就出來了!
6、夾逼定理(主要對付的是數(shù)列極限!)這個主要是看見極限中的函數(shù)是方程相除的形式,放縮和擴大。
7、等比等差數(shù)列公式應用(對付數(shù)列極限)(q絕對值符號要小于1)。
8、各項的拆分相加(來消掉中間的大多數(shù))(對付的還是數(shù)列極限)可以使用待定系數(shù)法來拆分化簡函數(shù)。
9、求左右極限的方式(對付數(shù)列極限)例如知道Xn與Xn+1的關系,已知Xn的極限存在的情況下,xn的極限與xn+1的極限時一樣的,因為極限去掉有限項目極限值不變化。
10、兩個重要極限的應用。這兩個很重要!對第一個而言是X趨近0時候的sinx與x比值。第2個就如果x趨近無窮大,無窮小都有對有對應的形式(第2個實際上是用于函數(shù)是1的無窮的形式)(當?shù)讛?shù)是1的時候要特別注意可能是用地兩個重要極限)
11、還有個方法,非常方便的方法,就是當趨近于無窮大時候,不同函數(shù)趨近于無窮的速度是不一樣的!x的x次方快于x!快于指數(shù)函數(shù),快于冪數(shù)函數(shù),快于對數(shù)函數(shù)(畫圖也能看出速率的快慢)!!當x趨近無窮的時候,他們的比值的極限一眼就能看出來了。
12、換元法是一種技巧,不會對單一道題目而言就只需要換元,而是換元會夾雜其中。
13、假如要算的話四則運算法則也算一種方法,當然也是夾雜其中的。
14、還有對付數(shù)列極限的一種方法,就是當你面對題目實在是沒有辦法,走投無路的時候可以考慮轉化為定積分。一般是從0到1的形式。
15、單調有界的性質,對付遞推數(shù)列時候使用證明單調性!
16、直接使用求導數(shù)的定義來求極限,(一般都是x趨近于0時候,在分子上f(x加減某個值)加減f(x)的形式,看見了要特別注意)(當題目中告訴你F(0)=0時候f(0)導數(shù)=0的時候,就是暗示你一定要用導數(shù)定義!
函數(shù):
函數(shù)是表皮,函數(shù)的性質也體現(xiàn)在積分微分中。例如他的奇偶性質他的周期性。還有復合函數(shù)的性質:
1、奇偶性,奇函數(shù)關于原點對稱偶函數(shù)關于軸對稱偶函數(shù)左右2邊的圖形一樣(奇函數(shù)相加為0);
2、周期性也可用在導數(shù)中在定積分中也有應用定積分中的函數(shù)是周期函數(shù)積分的周期和他的一致;
3、復合函數(shù)之間是自變量與應變量互換的關系;
4、還有個單調性。(再求0點的時候可能用到這個性質!(可以導的函數(shù)的單調性和他的導數(shù)正負相關):o再就是總結一下間斷點的問題(應為一般函數(shù)都是連續(xù)的所以間斷點是對于間斷函數(shù)而言的)間斷點分為第一類和第二類剪斷點。第一類是左右極限都存在的(左右極限存在但是不等跳躍的的間斷點或者左右極限存在相等但是不等于函數(shù)在這點的值可取的間斷點;第二類間斷點是震蕩間斷點或者是無窮極端點(這也說明極限即使不存在也有可能是有界的)。
下面總結一下,求極限的一般題型:
1、求分段函數(shù)的極限,當函數(shù)含有絕對值符號時,就很有可能是有分情況討論的了!當X趨近無窮時候存在e的x次方的時候,就要分情況討論應為E的x次方的函數(shù)正負無窮的結果是不一樣的!
2、極限中含有變上下限的積分如何解決嘞?說白了,就是說函數(shù)中現(xiàn)在含有積分符號,這么個符號在極限中太麻煩了你要想辦法把它搞掉!
解決辦法:
1、求導,邊上下限積分求導,當然就能得到結果了,這不是很容易么?但是!有2個問題要注意!問題1:積分函數(shù)能否求導?題目沒說積分可以導的話,直接求導的話是錯誤的!!!!問題2:被積分函數(shù)中既含有t又含有x的情況下如何解決?
解決1的方法:就是方法2微分中值定理!微分中值定理是函數(shù)與積分的聯(lián)系!更重要的是他能去掉積分符號!解決2的方法:當x與t的函數(shù)是相互乘的關系的話,把x看做常數(shù)提出來,再求導數(shù)!!當x與t是除的關系或者是加減的關系,就要換元了!(換元的時候積分上下限也要變化!)
3、求的是數(shù)列極限的問題時候:夾逼或者分項求和定積分都不可以的時候,就考慮x趨近的時候函數(shù)值,數(shù)列極限也滿足這個極限的,當所求的極限是遞推數(shù)列的時候:首先:判斷數(shù)列極限存在極限的方法是否用的單調有界的定理。判斷單調性不能用導數(shù)定義!!數(shù)列是離散的,只能用前后項的比較(前后項相除相減),數(shù)列極限是否有界可以使用歸納法最后對xn與xn+1兩邊同時求極限,就能出結果了!
4、涉及到極限已經(jīng)出來了讓你求未知數(shù)和位置函數(shù)的問題。
解決辦法:主要還是運用等價無窮小或者是同階無窮小。因為例如:當x趨近0時候f(x)比x=3的函數(shù),分子必須是無窮小,否則極限為無窮,還有洛必達法則的應用,主要是因為當未知數(shù)有幾個時候,使用洛必達法則,可以消掉某些未知數(shù),求其他的未知數(shù)。
5、極限數(shù)列涉及到的證明題,只知道是要構造新的函數(shù),但是不太會!!!
最后總結一下間斷點的題型:
首先,遇見間斷點的問題、連續(xù)性的問題、復合函數(shù)的問題,在某個點是否可導的問題。主要解決辦法一個是畫圖,你能畫出反例來當然不可以了,你實在畫不出反例,就有可能是對的,尤其是那些考概念的題目,難度不小,對我而言證明很難的!我就畫圖!!我要能畫出來當然是對的,在這里就要很好的理解一階導的性質2階導的性質,函數(shù)圖形的凹凸性,函數(shù)單調性函數(shù)的奇偶性在圖形中的反應!(在這里尤其要注意分段函數(shù)!(例如分段函數(shù)導數(shù)存在還相等但是卻不連續(xù)這個性質就比較特殊!!應為一般的函數(shù)都是連續(xù)的);
方法2就是舉出反例!(在這里也是尤其要注意分段函數(shù)!!)例如一個函數(shù)是個離散函數(shù),還有個也是離散函數(shù)他們的復合函數(shù)是否一定是離散的嘞?答案是NO,舉個反例就可以了;
方法3上面的都不行那就只好用定義了,主要是寫出公式,連續(xù)性的公式,求在某一點的導數(shù)的公式
最后了,總結一下函數(shù)在某一點是否可導的問題:
1、首先函數(shù)連續(xù)不一定可導,分段函數(shù)x絕對值函數(shù)在(0,0)不可導,我的理解就是:不可導=在這點上圖形不光滑??蓪б欢ㄟB續(xù),因為他有個前提,在點的鄰域內(nèi)有定義,假如沒有這個前提,分段函數(shù)左右的導數(shù)也能相等;
主要考點1:函數(shù)在某一點可導,他的絕對值函數(shù)在這點是否可導?解決辦法:記住函數(shù)絕對值的導數(shù)等于f(x)除以(絕對值(f(x)))再乘以F(x)的導數(shù)。所以判斷絕對值函數(shù)不可導點,首先判斷函數(shù)等于0的點,找出這些點之后,這個導數(shù)并不是百分百不存在,原因很簡單分母是無窮小,假如分子式無窮小的話,絕對值函數(shù)的導數(shù)依然存在啊,所以還要找出f(a)導數(shù)的值,不為0的時候,絕對值函數(shù)在這點的導數(shù)是無窮,所以絕對值函數(shù)在這些點上是不可導的啊。
考點2:處處可導的函數(shù)與在,某一些點不可導但是連續(xù)的函數(shù)相互乘的函數(shù),這個函數(shù)的不可導點的判斷,直接使用導數(shù)的定義就能證明,我的理解是f(x)連續(xù)的話但是不可導,左右導數(shù)存在但是不等,左右導數(shù)實際上就是X趨近a的2個極限,f(x)乘以G(x)的函數(shù)在x趨近a的時候,f(x)在這點上的這2個極限乘以g(a),當g(a)等于0的時候,左右極限乘以0當然相等了,乘積的導數(shù)=f(a)導數(shù)乘以G(a)+G(a)導數(shù)乘以F(a),應為f(a)導數(shù)乘以G(a)=0,前面推出來了,所以乘積函數(shù)在這點上就可導了。導數(shù)為G(a)導數(shù)乘以F(a)。
第四篇:考研數(shù)學證明題答題技巧
證明題可以分三步走:
第一步:結合幾何意義記住零點存在定理、中值定理、泰勒公式、極限存在的兩個準則等基本原理,包括條件及結論。了解基本原理是證明的基礎,了解的程度不同會導致不同的推理能力。如2006年數(shù)學一真題第16題(1)是證明極限的存在性并求極限。只要證明了極限存在,求值是很容易的,但是如果沒有證明第一步,即使求出了極限值也是不能得分的。因為數(shù)學推理是環(huán)環(huán)相扣的,如果第一步未得到結論,那么第二步就是空中樓閣。這個題目非常簡單,只用了極限存在的兩個準則之一:單調有界數(shù)列必有極限。只要知道這個準則,該問題就能輕松解決,因為對于該題中的數(shù)列來說,“單調性”與“有界性”都是很好驗證的。像這樣直接可以利用基本原理的證明題并不是很多,更多的是要用到第二步。
第二步:借助幾何意義尋求證明思路。一個證明題,大多時候是能用其幾何意義來正確解釋的,當然最為基礎的是要正確理解題目中文字的含義。如2007年數(shù)學一第19題是一個關于中值定理的證明題,可以在直角坐標系中畫出滿足題設條件的函數(shù)草圖,再聯(lián)系結論能夠發(fā)現(xiàn):兩個函數(shù)除兩個端點外還有一個函數(shù)值相等的點,那就是兩個函數(shù)分別取最大值的點(正確審題:兩個函數(shù)取得最大值的點不一定是同一個點)之間的一個點。這樣很容易想到輔助函數(shù)有三個零點,兩次應用羅爾中值定理就能得到所證結論。再如2005年數(shù)學一第18題(1)是關于零點存在定理的證明題,只要在直角坐標系中結合所給條件作出函數(shù)及在上的圖形就立刻能看到兩個函數(shù)圖形有交點,這就是所證結論,重要的是寫出推理過程。從圖形也應該看到兩函數(shù)在兩個端點處大小關系恰好相反,也就是差函數(shù)在兩個端點的值是異號的`,零點存在定理保證了區(qū)間內(nèi)有零點,這就證得所需結果。如果第二步實在無法完滿解決問題的話,轉第三步。
第三步:逆推。從結論出發(fā)尋求證明方法。如2004年第15題是不等式證明題,該題只要應用不等式證明的一般步驟就能解決問題:即從結論出發(fā)構造函數(shù),利用函數(shù)的單調性推出結論。在判定函數(shù)的單調性時需借助導數(shù)符號與單調性之間的關系,正常情況只需一階導的符號就可判斷函數(shù)的單調性,非正常情況卻出現(xiàn)的更多(這里所舉出的例子就屬非正常情況),這時需先用二階導數(shù)的符號判定一階導數(shù)的單調性,再用一階導的符號判定原來函數(shù)的單調性,從而得所要證的結果。
對于那些經(jīng)常使用如上方法的同學來說,利用三步走就能輕松收獲數(shù)學證明的分數(shù),但對于從心理上就不自信能解決證明題的同學來說,卻常常輕易丟失,后一部分同學請按“證明三步走”來建立自信心,以防止分數(shù)的白白流失。