千文網(wǎng)小編為你整理了多篇相關(guān)的《柯西中值定理證明考研(范文5篇)》,但愿對你工作學(xué)習(xí)有幫助,當然你在千文網(wǎng)還可以找到更多《柯西中值定理證明考研(范文5篇)》。
第一篇:微分中值定理的證明題
微分中值定理的證明題
1.若f(x)在[a,b]上連續(xù),在(a,b)上可導(dǎo),f(a)?f(b)?0,證明:???R,???(a,b)使得:f?(?)??f(?)?0。
證:構(gòu)造函數(shù)F(x)?f(x)e?x,則F(x)在[a,b]上連續(xù),在(a,b)內(nèi)可導(dǎo),(a,b),使F?(?)?0 且F(a)?F(b)?0,由羅爾中值定理知:??? 即:[f?(?)??f(?)]e???0,而e???0,故f?(?)??f(?)?0。
2.設(shè)a,b?0,證明:???(a,b),使得aeb?bea?(1??)e?(a?b)。
1111 證:將上等式變形得:e?e?(1??)e?(?)
baba1x11b11a111111作輔助函數(shù)f(x)?xe,則f(x)在[,]上連續(xù),在(,)內(nèi)可導(dǎo),baba 由拉格朗日定理得:
11f()?f()ba?f?(1)1?(1,1),11ba???ba11b1a1e?e1a?(1?)e?
1?(1,1),即 b11ba???ba
即:
aeb?bea?(1??)e?(a?b)
??(a,b)。
3.設(shè)f(x)在(0,1)內(nèi)有二階導(dǎo)數(shù),且f(1)?0,有F(x)?x2f(x)證明:在(0,1)
內(nèi)至少存在一點?,使得:F??(?)?0。
證:顯然F(x)在[0,1]上連續(xù),在(0,1)內(nèi)可導(dǎo),又F(0)?F(1)?0,故由羅爾定理知:?x0?(0,1),使得F?(x0)?0
又F?(x)?2xf(x)?x2f?(x),故F?(0)?0,于是F?(x)在[0,x0]上滿足羅爾定理條件,故存在??(0,x0),使得:F??(?)?0,而??(0,x0)?(0,1),即證 4.設(shè)函數(shù)f(x)在[0,1]上連續(xù),在(0,1)上可導(dǎo),f(0)?0,f(1)?1.證明:(1)在(0,1)內(nèi)存在?,使得f(?)?1??.
(2)在(0,1)內(nèi)存在兩個不同的點?,?使得f/(?)f/(?)?1
【分析】 第一部分顯然用閉區(qū)間上連續(xù)函數(shù)的介值定理;第二部分為雙介值問題,可考慮用拉格朗日中值定理,但應(yīng)注意利用第一部分已得結(jié)論.【證明】(I)
令F(x)?f(x)?1?x,則F(x)在[0,1]上連續(xù),且F(0)=-10,于是由介值定理知,存在??(0,1), 使得F(?)?0,即f(?)?1??.(II)在[0,?]和[?,1]上對f(x)分別應(yīng)用拉格朗日中值定理,存在兩個不同的點??(0,?),??(?,1),使得f?(?)?于是,由問題(1)的結(jié)論有
f?(?)f?(?)?f(?)1?f(?)1???????1.?1???1??f(?)?f(0)f(1)?f(?),f?(?)?
??01??5.設(shè)f(x)在[0,2a]上連續(xù),f(0)?f(2a),證明在[0,a]上存在?使得
f(a??)?f(?).【分析】f(x)在[0,2a]上連續(xù),條件中沒有涉及導(dǎo)數(shù)或微分,用介值定理或根的存在性定理證明。輔助函數(shù)可如下得到
f(a??)?f(?)?f(a??)?f(?)?0?f(a?x)?f(x)?0
【證明】令G(x)?f(a?x)?f(x),x?[0,a].G(x)在[0,a]上連續(xù),且
G(a)?f(2a)?f(a)?f(0)?f(a)
G(0)?f(a)?f(0)
當f(a)?f(0)時,取??0,即有f(a??)?f(?);
當f(a)?f(0)時,G(0)G(a)?0,由根的存在性定理知存在??(0,a)使得,G(?)?0,即f(a??)?f(?).
6.若f(x)在[0,1]上可導(dǎo),且當x?[0,1]時有0?f(x)?1,且f?(x)?1,證明:在(0,1)內(nèi)有且僅有一個點?使得f(?)?? 證明:存在性
構(gòu)造輔助函數(shù)F(x)?f(x)?x
則F(x)在[0,1]上連續(xù),且有F(0)?f(0)?0?0,F(xiàn)(1)?f(1)?1?0,?由零點定理可知:F(x)在(0,1)內(nèi)至少存在一點?,使得F(?)?0,即:f(?)??
唯一性:(反證法)
假設(shè)有兩個點?1,?2?(0,1),且?1??2,使得F(?1)?F(?2)?0
F(x)在[0,1]上連續(xù)且可導(dǎo),且[?1,?2]?[0,1] ?
?F(x)在[?1,?2]上滿足Rolle定理條件
?必存在一點??(?1,?2),使得:F?(?)?f?(?)?1?0
即:f?(?)?1,這與已知中f?(x)?1矛盾
?假設(shè)不成立,即:F(x)?f(x)?x在(0,1)內(nèi)僅有一個根,綜上所述:在(0,1)內(nèi)有且僅有一個點?,使得f(?)??
17.設(shè)f(x)在[0,1]上連續(xù),在(0,1)內(nèi)可導(dǎo),且f(0)=f(1)=0,f()=1。試
2(x)=1。證至少存在一個??(0,1),使f¢分析:f'(?)=1?f'(x)=1?f(x)=x?f(x)?x=0 令 F(x)= f(x)?x 證明: 令 F(x)= f(x)?x
F(x)在[0,1]上連續(xù),在(0,1)內(nèi)可導(dǎo),F(xiàn)(1)= f(1)?1??1?0(?f(1)?0)F(11111)= f()???0(?f()?1)222221由介值定理可知,?一個??(,1),使 F(?)=0 又 F(0)=f(0)?0=0 對F(x)在[0,1]上用Rolle定理,?一個??(0,?)?(0,1)使
F'(?)=0 即 f'(?)=1 8.設(shè)f(x)在[0,1]上連續(xù),在(0,1)內(nèi)可導(dǎo),且f(0)?f(1)試證存在?和?.滿足0?????1,使f?(?)?f?(?)?0。
證 由拉格朗日中值定理知,1f()?f(0)12?f?(?)??(0,)
12?021f(1)?f()12?f?(?)??(,1)
121?211f()?f(0)f(1)?f()2?0 f?(?)?f?(?)?2?11229.設(shè)f(x)在[a,b]上連續(xù),(a,b)內(nèi)可導(dǎo)(0?a?b),f(a)?f(b), 證明: ??,??(a,b)使得 f?(?)?a?bf?(?).(1)2?證:(用(b?a)乘于(1)式兩端,知)(1)式等價于
f?(?)f?(?)2(b?a)?(b?a2).(2)12?
為證此式,只要取F(x)?f(x),取G(x)?x和x在[a,b]上分別應(yīng)用Cauchy中值定理,則知
2f?(?)f?(?)2?(b?a)?(b?a2), f(b)?f(a)?12?其中?,??(a,b).10.已知函數(shù)f(x)在[0 ,1]上連續(xù),在(0,1)內(nèi)可導(dǎo),0?a?b,證明存在?,??(a,b),使3?2f/(?)?(a2?ab?b2)f/(?)
f/(?)f(b)?f(a)解:利用柯西中值定理 ?2333?b?a而f(b)?f(a)?f/(?)(b?a)
則
f/(?)f(b)?f(a)f/(?)(b?a)f/(?)(后面略)???22333323?b?ab?aa?ab?b/11.設(shè)f(x)在x?a時連續(xù),f(a)?0,當x?a時,f(x)?k?0,則在(a,a?f(a))k內(nèi)f(x)?0有唯一的實根
/解:因為f(x)?k?0,則f(x)在(a,a?f(a))上單調(diào)增加 kf(a)f(a)f/(?)/f(a?)?f(a)?f(?)?f(a)[1?]?0(中值定理)
kkk而f(a)?0故在(a,a?f(a))內(nèi)f(x)?0有唯一的實根 k1?2t?0?tsin12.試問如下推論過程是否正確。對函數(shù)f(t)??在[0,x]上應(yīng)用拉t?t?0?0格朗日中值定理得:
1x2sin?0f(x)?f(0)111x??xsin?f??(?)?2si?nc(0s???x)
ox?0x?0x??
即:cos1??2?sin1??xsin1)
(0???x
x1xsin? lim?x?0??0,il2?nsi?0
因0???x,故當x?0時,由m??0?1?0 x
得:lim?cosx?0
1??0,即limcos???01??0
解:我們已經(jīng)知道,lim?cos??01??0不存在,故以上推理過程錯誤。
首先應(yīng)注意:上面應(yīng)用拉格朗日中值的?是個中值點,是由f和區(qū)間[0,x]的
端點而定的,具體地說,?與x有關(guān)系,是依賴于x的,當x?0時,?不 一定連續(xù)地趨于零,它可以跳躍地取某些值趨于零,從而使limcos?x?01??0成
立,而lim?cos??01??0中要求?是連續(xù)地趨于零。故由limcos?x?01??0推不出
??0lim?cos1??0
13.證明:?0?x??2成立x?tgx?x。cos2x
證明:作輔助函數(shù)f(x)?tgx,則f(x)在[0,x]上連續(xù),在(0,x)內(nèi)可導(dǎo),由拉格朗日定理知:
f(x)?f(0)tgx1??(0,x)??f?(?)?x?0xcos2?即:tgx??1?x(0,)(0,),因在內(nèi)單調(diào)遞減,故在cosx22cosx22cos?111xx??x??即: cos20cos2?cos2xcos2?cos2x內(nèi)單調(diào)遞增,故
即:x?tgx?1。cos2x
注:利用拉格朗日中值定理證明不等式,首先由不等式出發(fā),選擇合適的函數(shù)f(x)及相應(yīng)的區(qū)間[a,b],然后驗證條件,利用定理得
??f?()(?b?a?(a,b)
f(b)?f(a),再根據(jù)f?(x)在(a,b)內(nèi)符號或單調(diào)
證明不等式。?14.證明:當0?x?時,sinx?tgx?2x。
證明:作輔助函數(shù)?(x)?sinx?tgx?2x
則??(x)?cosx?sec2x?2
1?2 cos2x1?cos2x?2? 2cosx?cosx?x?(0,)
2?
?(cosx??0
12)cosx??
故?(x)在(0,)上單調(diào)遞減,又因?(0)?0,?(x)在(0,)上連續(xù),22
故 ?(x)??(0)=0,即:sinx?tgx?2x?0,即:sinx?tgx?2x。
注:利用單調(diào)性證明不等式是常用方法之一,欲證當x?I時f(x)?g(x),常用輔助函數(shù)?(x)?f(x)?g(x),則將問題轉(zhuǎn)化證?(x)?0,然后在I上
討論?(x)的單調(diào)性,進而完成證明。
15.證明:若f(x)二階可導(dǎo),且f??(x)?0,f(0)?0,則F(x)?,內(nèi)單調(diào)遞增。)
(0??
f(x)在 x證明:因F?(x)?xf?(x)?f(x),要證F(x)單調(diào)遞增,只需證F?(x)?0,2x
即證xf?(x)?f(x)?0。
設(shè)G(x)?xf?(x)?f(x),則G?(x)?xf??(x)?f?(x)?f?(x)?xf??(x),因為
f??(x)?0,x?0,故G(x)是單調(diào)遞增函數(shù),而G(0)?0f?(x)?0?0,因此G(x)?G(0),即:xf?(x)?f(x)?0,即:F?(x)?0,即F(x)當x?0時單調(diào)遞增。
第二篇:有關(guān)中值定理的證明題
中值定理證明題集錦
1、已知函數(shù)f(x)具有二階導(dǎo)數(shù),且limx?0f(x)?0,f(1)?0,試證:在區(qū)間(0,1)內(nèi)至少x存在一點?,使得f??(?)?0.證:由limf(x),由此又得?0?0,可得limf(x)?0,由連續(xù)性得f(0)x?0x?0xf(x)?f(0)f(x)f?(0)?lim?lim?0,由f(0)?f(1)?0及題設(shè)條件知f(x)在[0,1]x?0x?0x?0x上滿足羅爾中值定理條件,因此至少存在一點 c?(0,1),使得f?(c)?0,又因為f?(0)?f?(c)?0,并由題設(shè)條件知f?(x)在[0,c]上滿足拉格朗日中值定理的條件,由拉格朗日中值定理知,在區(qū)間(0,1)內(nèi)至少存在一點?,使得f??(?)?0.2、設(shè)f(x)在[0,a]上連續(xù),在(0,a)內(nèi)可導(dǎo),且f(a)?0,證明:存在一點??(0,a),使得f(?)??f?(?)?0.證:分析:要證結(jié)論即為:[xf(x)]?x???0.令F(x)?xf(x),則F(x)在[0,a]上連續(xù),在(0,a)內(nèi)可導(dǎo),且F(0)?F(a)?0,因此故存在一點??(0,a),使得F?(?)?0,F(xiàn)(x)?xf(x)在[0,a]上滿足羅爾中值定理的條件,即f(?)??f?(?)?0.注1:此題可改為:
設(shè)f(x)在[0,a]上連續(xù),在(0,a)內(nèi)可導(dǎo),且f(a)?0,證明:存在一點??(0,a),使得
nf(?)??f?(?)?0.)?nf??(?)(0給分析:要證結(jié)論nf(??)??f(??)等價于n?n?1f(??nn?1n,而n?f(?)??f?(?)?0即為[xf(x)]?x???0.nf(??)??f(??)兩端同乘以?n?1)故令F(x)?xf(x),則F(x)在[0,a]上滿足羅爾中值定理的條件,由此可證結(jié)論.注2:此題與下面例題情況亦類似:
設(shè)f(x)在[0,1]上連續(xù),在(0,1)內(nèi)可導(dǎo),且f(0)?0,?x?(0,1),有f(x)?0,證:n?n?N?,???(0,1),使得
nf?(?)f?(1??)?成立.f(?)f(1??)分析:要證結(jié)論可變形為nf?(?)f(1??)?f(?)f?(1??)?0,它等價于nfn?1(?)f?(?)f(1??)?fn(?)f?(1??)?0(給nf?(?)f(1??)?f(?)f?(1??)?0兩端同乘以fn?1(?)),而nfn?1(?f)??f(??)?(fn1?f?)???(即)為(1)0[fn(x)?f?x??1?(x,用羅爾中值定理)]0.以上三題是同類型題.3、已知函數(shù)f(x)在[0,1]上連續(xù),在(0,1)內(nèi)可導(dǎo),且f(0)?f(1)?0,f()?1,證明:(1)存在一點??(,1),使f(?)??.(2)存在一點??(0,?),使f?(?)?1.(3)存在一點x0?(0,?),使f?(x0)?1??(f(x0)?x0).證:(1)分析:要證結(jié)論即為:f(?)???0.12121211111顯然F(x)在[,1]上連續(xù),且F()?f()???0,F(xiàn)(1)?f(1)?1??1?0,2222211因此F(x)在[,1]上滿足零點定理的條件,由零點定理知,存在??(,1),使F(?)?0,22令F(x)?f(x)?x,則只需證明F(x)在(,1)內(nèi)有零點即可。即f(?)??.(2)又因為F(0)?f(0)?0?0,由(1)知F(?)?0,因此F(x)在[0,?]上滿足羅爾中值定理條件,故存在一點??(0,?),使F?(?)?0,即f?(?)?1?0,即f?(?)?1.(3)分析:結(jié)論f?(x0)?1??(f(x0)?x0)即就是F?(x0)??F(x0)或F?(x0)??F(x0)?0,F(xiàn)?(x0)??F(x0)?0?e??x0[F?(x0)??F(x0)]?0,即[e??xF(x)]?x?x0?0.故令G(x)?e??xF(x),則由題設(shè)條件知,G(x)在[0,?]上連續(xù),在(0,?)內(nèi)可導(dǎo),且G(0)?e0F(0)?0,G(?)?e???F(?)?0,則G(x)在[0,?]上滿足羅爾中值定理條件,命題得證.4、設(shè)f(x)在[0,x]上可導(dǎo),且f(0)?0,試證:至少存在一點??(0,x),使得f(x)?(1??)ln(1?x)f?(?).證:分析:要證結(jié)論即為: f(x)?f(0)?(1??)[ln(1?x)?ln1]f?(?),也就是f(x)?f(0)f?(?),因此只需對函數(shù)f(t)和ln(1?t)在區(qū)間[0,x]上應(yīng)用柯西中值定理?1ln(1?x)?ln11??即可.5、設(shè)f(x)、g(x)在[a,b]上連續(xù),在(a,b)內(nèi)可導(dǎo),f(a)?f(b)?0,且g(x)?0,證明:至少存在一點??(a,b),使得f?(?)g(?)?f(?)g?(?).證:分析:要證結(jié)論即為: f?(?)g(?)?f(?)g?(?)?0,等價于
f?(?)g(?)?f(?)g?(?)?0,2g(?)即就是[即可.f(x)f(x)在區(qū)間[a,b]上應(yīng)用羅爾中值定理]?x???0,因此只需驗證函數(shù)F(x)?g(x)g(x)
6、設(shè)f(x)在[x1,x2]上可導(dǎo),且0?x1?x2,試證:至少存在一點??(x1,x2),使得x1f(x2)?x2f(x1)???f?(?)?f(?).x1?x2f(x2)f(x1)f(x)?()?x??x2x1x證:分析:要證結(jié)論即為: ,因此只需對函???f?(?)?f(?)?111?()?x??x2x1x數(shù)f(x)1和在區(qū)間[x1,x2]上應(yīng)用柯西中值定理即可.xx此題亦可改為:
設(shè)f(x)在[a,b]上連續(xù),(a,b)內(nèi)可導(dǎo),若0?a?b,試證:至少存在一點??(a,b),使得af(b)?bf(a)?[f(?)??f?(?)](a?b).7、設(shè)f(x)在[a,b]上連續(xù),在(a,b)內(nèi)可導(dǎo),且f(a)?f(b)?0,試證:(1)???(a,b),使得f(?)??f?(?)?0;(2)???(a,b),使得?f(?)?f?(?)?0.證:(1)令F(x)?xf(x),利用羅爾中值定理即證結(jié)論.(2)分析:?f(?)?f?(?)?0?e[?f(?)?f?(?)]?0?[e?22x22f(x)]?x???0,因此令F(x)?ex22f(x),利用羅爾中值定理即證結(jié)論.8、設(shè)f(x)在[a,b]上連續(xù),在(a,b)內(nèi)可導(dǎo),且f(a)?f(b)?1,試證:??,??(a,b),使得e???[f(?)?f?(?)]?1.[exf(x)]?x??e?[f(?)?f?(?)]證:分析:要證結(jié)論即為?1,即就是?1.?xe(e)?x??令F(x)?ef(x),令G(x)?e,則F(x)和G(x)在[a,b]上滿足拉格朗日中值定理的條件,由拉格朗日中值定理知: xxebf(b)?eaf(a)eb?ea?,即就是e[f(?)?f?(?)]?.???(a,b),使得F?(?)?b?ab?aeb?eaeb?ea?,即就是e?.???(a,b),使得F?(?)?b?ab?ae?[f(?)?f?(?)]因此,有?1,即就是e???[f(?)?f?(?)]?1.?e9、設(shè)f(x)、g(x)在[a,b]上連續(xù),在(a,b)內(nèi)具有二階導(dǎo)數(shù)且存在相等的最大值,f(a)?g(a),f(b)?g(b),試證:???(a,b),使得f??(?)?g??(?).?0.證:分析:要證結(jié)論即為[f(x)?g(x)]??x??令F(x)?f(x)?g(x),(1)若f(x)、g(x)在(a,b)內(nèi)的同一點處取得相同的最大值,不妨設(shè)都在c點處取得最大值,則F(a)?F(c)?F(b)?0(a?c?b),則F(x)分別在[a,c]、[c,b]上滿足羅爾中值定理條件,故??1?(a,c),??2?(c,b)使得F?(?1)?0,F(xiàn)?(?2)?0.由題設(shè)又知,F(xiàn)?(x)在[?1,?2]上滿足洛爾定理條件,故存在???(?1,?2),使得F??(?)?0,即就是f??(?)?g??(?)].(2)若f(x)、g(x)在(a,b)內(nèi)的不同的點處取得相同的最大值,不妨設(shè)f(x)在p點處、g(x)在q點處取得最大值,且p?q,則F(p)?f(p?)g(?p),F(xiàn)(q)?f(q)?g(q)?0,由零點定理知,?c?(p,q)?(0,1),使得F(c)?0,由此得 F(a)?F(c)?F(b)?0(a?c?b),后面證明與(1)相同.10、設(shè)f(x)在[a,b]上連續(xù),在(a,b)內(nèi)可導(dǎo),且f?(x)?0,若極限lim?x?af(2x?a)存在,x?a試證:(1)存在一點??(a,b),使得
b2?a2?b?af(x)dx22?; f(?)22?b(2)在(a,b)內(nèi)存在異于?的點?,使得f?(?)(b?a)?f(x)dx.;
??a?a證:(1)令F(x)??xaf(t)dt,G(x)?x2,則F(x)、G(x)在[a,b]上滿足柯西中值定理
b2?a2ba條件,故存在一點??(a,b),使得
?b2?a2af(t)dt??f(t)dta?2?成立,即就是f(?)?bab2?22成立,即就是2??f(x)dx?(b?a)f(?)成立.?af(x)dxf(?)(2)由(1)知,2??ba22因此要證f?(?)(b?a)?f(x)dx?(b2?a2)f(?),2?bf(x)dx.,?a??a即要證f?(?)(b?a)?221??a(b2?a2)f?(,)即要證f?(?)(??a)?f(?,)由已知
x?alim?f(2x?a)f(2x?a)?0,可得,lim從而得f(a)?0,因此要證f?(?)(??a)?f(?),x?a?x?a即要證f?(?)(??a)?f(?)?f(a),顯然只需驗證f(x)在[a,?]上滿足拉格朗日中值定理條件即可。