千文網(wǎng)小編為你整理了多篇相關(guān)的《極限不存在該怎么證明(范文三篇)》,但愿對你工作學(xué)習(xí)有幫助,當(dāng)然你在千文網(wǎng)還可以找到更多《極限不存在該怎么證明(范文三篇)》。
第一篇:證明極限不存在的方法
im (x 和y)趨向于無窮大 (x^2-5y^2) / (x^2+3y^2)
證明該極限不存在
lim(x^2-5y^2) / (x^2+3y^2)
=lim(x^2+3y^2) / (x^2+3y^2) - 8y^2 / (x^2+3y^2)
=1-lim8 / [(x/y)^2+3]
因為不知道x、y的大校
所以lim (x 和y)趨向于無窮大 (x^2-5y^2) / (x^2+3y^2)
第二篇:證明極限介紹
二元函數(shù)的極限是高等數(shù)學(xué)中一個很重要的內(nèi)容,因為其定義與一元函數(shù)極限的定義有所不同,需要定義域上的`點趨于定點時必須以任意方式趨近,所以與之對應(yīng)的證明極限不存在的方法有幾種.其中有一種是找一種含參數(shù)的方式趨近,代入二元函數(shù),使之變?yōu)橐辉瘮?shù)求極限.若最后的極限值與參數(shù)有關(guān),則說明二重極限不存在.但在證明這類型的題目時,除了選y=kx這種趨近方式外,許多學(xué)生不知該如何選擇趨近方式.本文給出證明一類常見的有理分式函數(shù)極限不存在的一種簡單方法.例1[1]證明下列極限不存在:(1)lim(x,y)→(0,0)x4y2x6+y6;(2)lim(x,y)→(0,0)x2y2x2y2+(x-y)2.證明一般地,對于(1)選擇當(dāng)(x,y)沿直線y=kxy=kx趨近于(0,0)時,有l(wèi)im(x,y)→(0,0)x4y2x6+y6=limx→0k2x6(1+k6)x6=k21+k6.顯然它隨著k值的不同而改變,故原極限不存在.對于(2)若仍然選擇以上的趨近方式,則不能得到證明.實際上,若選擇(x,y)沿拋物線y=kx2+x(k≠0)(x,y)→(0,0)趨近于(0,0),則有l(wèi)..
是因為定義域D={(x,y)|x不等于y}嗎,從哪兒入手呢,請高手指點
沿著兩條直線 y=2x
y=-2x 趨于(0,0)時
極限分別為 -3 和 -1/3 不相等
極限存在的定義要求 延任何過(0,0)直線求極限時 極限都相等
所以極限不存在
第三篇:函數(shù)極限
《數(shù)學(xué)分析》教案
第三章 函數(shù)極限
xbl
第三章 函數(shù)極限
教學(xué)目的:
1.使學(xué)生牢固地建立起函數(shù)極限的一般概念,掌握函數(shù)極限的基本性質(zhì); 2.理解并運用海涅定理與柯西準(zhǔn)則判定某些函數(shù)極限的存在性; 3.掌握兩個重要極限
和
,并能熟練運用;
4.理解無窮小(大)量及其階的概念,會利用它們求某些函數(shù)的極限。 教學(xué)重(難)點:
本章的重點是函數(shù)極限的概念、性質(zhì)及其計算;難點是海涅定理與柯西準(zhǔn)則的應(yīng)用。
教學(xué)時數(shù):16學(xué)時
§ 1 函數(shù)極限概念 (3學(xué)時)
教學(xué)目的:使學(xué)生建立起函數(shù)極限的準(zhǔn)確概念;會用函數(shù)極限的定義證明函數(shù)極限等有關(guān)命題。
教學(xué)要求:使學(xué)生逐步建立起函數(shù)極限的???定義的清晰概念。會應(yīng)用函數(shù)極限的???定義證明函數(shù)的有關(guān)命題,并能運用???語言正確表述函數(shù)不以某實數(shù)為極限等相應(yīng)陳述。
教學(xué)重點:函數(shù)極限的概念。
教學(xué)難點:函數(shù)極限的???定義及其應(yīng)用。
一、復(fù)習(xí):數(shù)列極限的概念、性質(zhì)等
二、講授新課:
(一) 時函數(shù)的極限:
- 21 《數(shù)學(xué)分析》教案
第三章 函數(shù)極限
xbl
例4 驗證
例5 驗證
例6 驗證
證 由 =
為使
需有
需有
為使
于是, 倘限制 , 就有
例7 驗證
例8 驗證 ( 類似有
(三)單側(cè)極限:
1.定義:單側(cè)極限的定義及記法. 幾何意義: 介紹半鄰域
- 23 《數(shù)學(xué)分析》教案
第三章 函數(shù)極限
xbl
我們引進(jìn)了六種極限: .以下以極限
,
為例討論性質(zhì).均給出證明或簡證.
二、講授新課:
(一)函數(shù)極限的性質(zhì): 以下性質(zhì)均以定理形式給出.
1.唯一性:
2.
局部有界性:
3.
局部保號性:
4.
單調(diào)性( 不等式性質(zhì) ):
Th 4 若使 ,證 設(shè)
和都有 =
( 現(xiàn)證對 都存在, 且存在點
的空心鄰域
,
有
註: 若在Th 4的條件中, 改“ 就有
5.6. 以
迫斂性:
”為“ 舉例說明.
”, 未必
四則運算性質(zhì): ( 只證“+”和“ ”)
(二)利用極限性質(zhì)求極限: 已證明過以下幾個極限:
- 25 《數(shù)學(xué)分析》教案
第三章 函數(shù)極限
xbl
例8
例9
例10 已知
求和
補(bǔ)充題:已知
求和 (
) § 3 函數(shù)極限存在的條件(4學(xué)時)
教學(xué)目的:理解并運用海涅定理與柯西準(zhǔn)則判定某些函數(shù)極限的存在性。 教學(xué)要求:掌握海涅定理與柯西準(zhǔn)則,領(lǐng)會其實質(zhì)以及證明的基本思路。 教學(xué)重點:海涅定理及柯西準(zhǔn)則。 教學(xué)難點:海涅定理及柯西準(zhǔn)則 運用。
教學(xué)方法:講授為主,輔以練習(xí)加深理解,掌握運用。 本節(jié)介紹函數(shù)極限存在的兩個充要條件.仍以極限
為例.
一.
Heine歸并原則——函數(shù)極限與數(shù)列極限的關(guān)系:
Th 1 設(shè)函數(shù)在,對任何在點
且
的某空心鄰域
內(nèi)有定義.則極限都存在且相等.( 證 )
存Heine歸并原則反映了離散性與連續(xù)性變量之間的關(guān)系,是證明極限不存在的有力工具.對單側(cè)極限,還可加強(qiáng)為
單調(diào)趨于
.參閱[1]P70.例1 證明函數(shù)極限的雙逼原理.
- 27 《數(shù)學(xué)分析》教案
第三章 函數(shù)極限
xbl
教學(xué)難點:兩個重要極限的證明及運用。
教學(xué)方法:講授定理的證明,舉例說明應(yīng)用,練習(xí)。 一.
(證) (同理有
)
例1
例2 .例3
例4
例5 證明極限 不存在.二.
證 對
有
例6
特別當(dāng) 等.例7
例8
- 28
29 《數(shù)學(xué)分析》教案
第三章 函數(shù)極限
xbl
三. 等價無窮?。?/p>
Th 2 ( 等價關(guān)系的傳遞性 ). 等價無窮小在極限計算中的應(yīng)用: Th 3 ( 等價無窮小替換法則 )
幾組常用等價無窮小: (見[2])
例3 時, 無窮小
與
是否等價? 例4
四.無窮大量:
1.定義:
2.性質(zhì):
性質(zhì)1 同號無窮大的和是無窮大.
性質(zhì)2 無窮大與無窮大的積是無窮大. 性質(zhì)3 與無界量的關(guān)系.
無窮大的階、等價關(guān)系以及應(yīng)用, 可仿無窮小討論, 有平行的結(jié)果.
3.無窮小與無窮大的關(guān)系:
無窮大的倒數(shù)是無窮小,非零無窮小的倒數(shù)是無窮大
習(xí) 題 課(2學(xué)時)
一、理論概述:
- 31 《數(shù)學(xué)分析》教案
第三章 函數(shù)極限
xbl
例7 .求
.注意 時, 且
.先求
由Heine歸并原則
即求得所求極限
.
例8 求是否存在.
和.并說明極限
解 ;
可見極限 不存在.
- - 32
高數(shù)極限證明
重要極限證明
極限證明(共8篇)
證明函數(shù)fx
凸函數(shù)證明