千文網(wǎng)小編為你整理了多篇相關(guān)的《《二元一次方程組的解法——加減消元法》教案(推薦6篇)》,但愿對你工作學(xué)習(xí)有幫助,當(dāng)然你在千文網(wǎng)還可以找到更多《《二元一次方程組的解法——加減消元法》教案(推薦6篇)》。
第一篇:七年級下冊《二元一次方程組》教案
教學(xué)目標(biāo)
知識與技能
(1)初步理解二元一次方程和一次函數(shù)的關(guān)系;
(2)掌握二元一次方程組和對應(yīng)的兩條直線之間的關(guān)系;
(3)掌握二元一次方程組的圖像解法.
過程與方法
(1)教材以“問題串”的形式,揭示方程與函數(shù)間的相互轉(zhuǎn)化,使學(xué)生在自主探索中學(xué)會不同數(shù)學(xué)知識間可以互相轉(zhuǎn)化的數(shù)學(xué)思想和方法;
(2)通過“做一做”引入例1,進(jìn)一步發(fā)展學(xué)生數(shù)形結(jié)合的意識和能力.
情感與態(tài)度
(1)在探究二元一次方程和一次函數(shù)的對應(yīng)關(guān)系中,在體會近似解與準(zhǔn)確解中,培養(yǎng)學(xué)生勤于思考、精益求精的精神.
(2)在經(jīng)歷同一數(shù)學(xué)知識可用不同的數(shù)學(xué)方法解決的過程中,培養(yǎng)學(xué)生的創(chuàng)新意識和變式能力.
教學(xué)重點(diǎn)
(1)二元一次方程和一次函數(shù)的關(guān)系;
(2)二元一次方程組和對應(yīng)的兩條直線的關(guān)系.
教學(xué)難點(diǎn)
數(shù)形結(jié)合和數(shù)學(xué)轉(zhuǎn)化的思想意識.
教學(xué)準(zhǔn)備
教具:多媒體課件、三角板.
學(xué)具:鉛筆、直尺、練習(xí)本、坐標(biāo)紙.
教學(xué)過程
第一環(huán)節(jié):設(shè)置問題情境,啟發(fā)引導(dǎo)(5分鐘,學(xué)生回答問題回顧知識)
內(nèi)容:1.方程x+y=5的解有多少個?是這個方程的解嗎?
2.點(diǎn)(0,5),(5,0),(2,3)在一次函數(shù)y=的圖像上嗎?
3.在一次函數(shù)y=的圖像上任取一點(diǎn),它的坐標(biāo)適合方程x+y=5嗎?
4.以方程x+y=5的解為坐標(biāo)的所有點(diǎn)組成的圖像與一次函數(shù)y=的圖像相同嗎?
由此得到本節(jié)課的第一個知識點(diǎn):
二元一次方程和一次函數(shù)的圖像有如下關(guān)系:
(1)以二元一次方程的解為坐標(biāo)的點(diǎn)都在相應(yīng)的函數(shù)圖像上;
(2)一次函數(shù)圖像上的點(diǎn)的坐標(biāo)都適合相應(yīng)的二元一次方程.
第二環(huán)節(jié)自主探索方程組的解與圖像之間的關(guān)系(10分鐘,教師引導(dǎo)學(xué)生解決)
內(nèi)容:1.解方程組
2.上述方程移項(xiàng)變形轉(zhuǎn)化為兩個一次函數(shù)y=和y=2x,在同一直角坐標(biāo)系內(nèi)分別作出這兩個函數(shù)的圖像.
3.方程組的解和這兩個函數(shù)的圖像的交點(diǎn)坐標(biāo)有什么關(guān)系?由此得到本節(jié)課的第2個知識點(diǎn):二元一次方程和相應(yīng)的兩條直線的關(guān)系以及二元一次方程組的圖像解法;
(1)求二元一次方程組的.解可以轉(zhuǎn)化為求兩條直線的交點(diǎn)的橫縱坐標(biāo);
(2)求兩條直線的交點(diǎn)坐標(biāo)可以轉(zhuǎn)化為求這兩條直線對應(yīng)的函數(shù)表達(dá)式聯(lián)立的二元一次方程組的解.
(3)解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種.
注意:利用圖像法求二元一次方程組的解是近似解,要得到準(zhǔn)確解,一般還是用代入消元法和加減消元法解方程組.
第三環(huán)節(jié)典型例題(10分鐘,學(xué)生獨(dú)立解決)
探究方程與函數(shù)的相互轉(zhuǎn)化
內(nèi)容:例1用作圖像的方法解方程組
例2如圖,直線與的交點(diǎn)坐標(biāo)是.
第四環(huán)節(jié)反饋練習(xí)(10分鐘,學(xué)生解決全班交流)
內(nèi)容:1.已知一次函數(shù)與的圖像的交點(diǎn)為,則.
2.已知一次函數(shù)與的圖像都經(jīng)過點(diǎn)A(―2,0),且與軸分別交于B,C兩點(diǎn),則的面積為().
(A)4(B)5(C)6(D)7
3.求兩條直線與和軸所圍成的三角形面積.
4.如圖,兩條直線與的交點(diǎn)坐標(biāo)可以看作哪個方程組的解?
第五環(huán)節(jié)課堂小結(jié)(5分鐘,師生共同總結(jié))
內(nèi)容:以“問題串”的形式,要求學(xué)生自主總結(jié)有關(guān)知識、方法:
1.二元一次方程和一次函數(shù)的圖像的關(guān)系;
(1)以二元一次方程的解為坐標(biāo)的點(diǎn)都在相應(yīng)的函數(shù)圖像上;
(2)一次函數(shù)圖像上的點(diǎn)的坐標(biāo)都適合相應(yīng)的二元一次方程.
2.方程組和對應(yīng)的兩條直線的關(guān)系:
(1)方程組的解是對應(yīng)的兩條直線的交點(diǎn)坐標(biāo);
(2)兩條直線的交點(diǎn)坐標(biāo)是對應(yīng)的方程組的解;
3.解二元一次方程組的方法有3種:
(1)代入消元法;
(2)加減消元法;
(3)圖像法.要強(qiáng)調(diào)的是由于作圖的不準(zhǔn)確性,由圖像法求得的解是近似解.
第六環(huán)節(jié)作業(yè)布置
習(xí)題7.7A組(優(yōu)等生)1、2、3B組(中等生)1、2C組1、2
附:板書設(shè)計(jì)
六、教學(xué)反思
第二篇:七年級下冊《二元一次方程組》教案
教學(xué)目標(biāo):
1、會用代入法解二元一次方程組
2、會闡述用代入法解二元一次方程組的基本思路――通過“代入”達(dá)到“消元”的目的,從而把解二元一次方程組轉(zhuǎn)化為解一元一次方程。
此外,在用代入法解二元一次方程組的知識發(fā)生過程中,讓學(xué)生從中體會“化未知為已知”的重要的數(shù)學(xué)思想方法。
引導(dǎo)性材料:
本節(jié)課,我們以上節(jié)課討論的求甲、乙騎自行車速度的問題為例,探求二元一次方程組的解法。前面我們根據(jù)問題“甲、乙騎自行車從相距60千米的兩地相向而行,經(jīng)過兩小時(shí)相遇。已知乙的速度是甲的速度的2倍,求甲、乙兩人的速度?!痹O(shè)甲的速度為X千米/小時(shí),由題意可得一元一次方程2(X+2X)=60;設(shè)甲的速度為X千米/小時(shí),乙的速度為Y千米/小時(shí),由題意可得二元一次方程組 2(X+Y)=60
Y=2X 觀察
2(X+2X)=60與 2(X+Y)=60 ①
Y=2X ② 有沒有內(nèi)在聯(lián)系?有什么內(nèi)在聯(lián)系?
(通過較短時(shí)間的觀察,學(xué)生通常都能說出上面的二元一次方程組與一元一次方程的內(nèi)在聯(lián)系――把方程①中的“Y”用“2X”去替換就可得到一元一次方程。)
知識產(chǎn)生和發(fā)展過程的教學(xué)設(shè)計(jì)
問題1:從上面的二元一次方程組與一元一次方程的內(nèi)在聯(lián)系的研究中,我們可以得到什么啟發(fā)?把方程①中的“Y”用“2X”去替換,就是把方程②代入方程①,于是我們就把一個新問題(解二元一次方程組)轉(zhuǎn)化為熟悉的問題(解一元一次方程)。
解方程組 2(X+Y)=60 ①
Y=2X ②
解:把②代入①得:
2(X+2X)=60,
6X=60,
X=10
把X=10代入②,得
Y=20
因此: X=10
Y=20
問題2:你認(rèn)為解方程組 2(X+Y)=60 ①
Y=2X ② 的關(guān)鍵是什么?那么解方程組
X=2Y+1
2X―3Y=4 的關(guān)鍵是什么?求出這個方程組的解。
上面兩個二元一次方程組求解的基本思路是:通過“代入”,達(dá)到消去一個未知數(shù)(即消元)的目的,從而把解二元一次方程組轉(zhuǎn)化為解一元一次方程,這種解二元一次方程組的方法叫“代入消元法”,簡稱“代入法”。
問題3:對于方程組 2X+5Y=-21 ①
X+3Y=8 ② 能否像上述兩個二元一次方程組一樣,把方程組中的一個方程直接代入另一個方程從而消去一個未知數(shù)呢?
(說明:從學(xué)生熟悉的`列一元一次方程求解兩個未知數(shù)的問題入手來研究二元一次方程組的解法,有利于學(xué)生建立新舊知識的聯(lián)系和培養(yǎng)良好的學(xué)習(xí)習(xí)慣,使學(xué)生逐步學(xué)會把一個還不會解決的問題轉(zhuǎn)化為一個已經(jīng)會解決的問題的思想方法,對后續(xù)的解三無一次方程組、一元二次方程、分式方程等,學(xué)生就有了求解的策略。)
例題解析
例:用代入法將下列解二元一次方程組轉(zhuǎn)化為解一元一次方程:
(1)X=1-Y ①
3X+2Y=5 ②
將①代入②(消去X)得:
3(1-Y)+2Y=5
(2)5X+2Y-25.2=0 ①
3X-5=Y ②
將②代入①(消去Y)得:
5X+2(3X-5)-25.2=0
(3)2X+Y=5 ①
3X+4Y=2 ②
由①得Y=5-2X,將Y=5-2X代入②消去Y得:
3X+4(5-2X)=2
(4)2S-T=3 ①
3S+2T=8 ②
由①得T=2S-3,將T=2S-3代入②消去T得:
3S+2(2S-3)=8
課內(nèi)練習(xí):
解下列方程組。
(1)2X+5Y=-21 (2)3X-Y=2
X+3Y=8 3X=11-2Y
小結(jié):
1、用代入法解二元一次方程組的關(guān)鍵是“消元”,把新問題(解二元一次方程組)轉(zhuǎn)化為舊知識(解一元一次方程)來解決。
2、用代入法解二元一次方程組,常常選用系數(shù)較簡單的方程變形,這用利于正確、簡捷的消元。
3、用代入法解二元一次方程組,實(shí)質(zhì)是數(shù)學(xué)中常用的重要的“換元”,比如在求解例(1)中,把①代入②,就是把方程②中的元“X”用“1-Y”去替換,使方程②中只含有一個未知數(shù)Y。
課后作業(yè):
教科書第14頁練習(xí)題2(1)、(2)題,第15頁習(xí)題5.2A組2(1)、(2)、(4)題。
第三篇:《二元一次方程組》教案
教學(xué)目標(biāo)
1.會列二元一次方程組解簡單的應(yīng)用題并能檢驗(yàn)結(jié)果的合理性。
2.提高分析問題、解決問題的能力。
3.體會數(shù)學(xué)的應(yīng)用價(jià)值。
教學(xué)重點(diǎn)
根據(jù)實(shí)際問題列二元一次方程組。
教學(xué)難點(diǎn)
1.找實(shí)際問題中的相等關(guān)系。
2.徹底理解題意。
教學(xué)過程
一、引入。
本節(jié)課我們繼續(xù)學(xué)習(xí)用二元一次方程組解決簡單實(shí)際問題。
二、新課。
例1.小琴去縣城,要經(jīng)過外祖母家,頭一天下午從她家走到個祖母家里,第二天上午,從外外祖母家出發(fā)勻速前進(jìn),走了2小時(shí)、5小時(shí)后,離她自己家分別為13千米、25千米。你能算出她的速度嗎?還能算出她家與外祖母家相距多遠(yuǎn)嗎?
探究:1.你能畫線段表示本題的數(shù)量關(guān)系嗎?
2.填空:(用含S、V的代數(shù)式表示)
設(shè)小琴速度是V千米/時(shí),她家與外祖母家相距S千米,第二天她走2小時(shí)趟的路程是______千米。此時(shí)她離家距離是______千米;她走5小時(shí)走的路程是______千米,此時(shí)她離家的距離是________千米20xx年-20xx學(xué)年七年級數(shù)學(xué)下冊全冊教案(人教版)教案。
3.列方程組。
4.解方程組。
5.檢驗(yàn)寫出答案。
討論:本題是否還有其它解法?
三、練習(xí)。
1.建立方程模型。
(1)兩在相距280千米,一般順流航行需14小時(shí),逆流航行需20小時(shí),求船在靜水中速度,水流的速度
(2)420個零件由甲、乙兩人制造。甲先做2天后,乙加入合作再做2天完成,乙先做2天,甲加入合作,還需3天完成。問:甲、乙每天各做多少個零件?
2.P38練習(xí)第2題。
3.小組合作編應(yīng)用題:兩個寫一方程組,另兩人根據(jù)方程組編應(yīng)用題。
四、小結(jié)。
本節(jié)課你有何收獲?
第四篇:《二元一次方程組》教案
澄邁中學(xué)曾文嬌
教學(xué)目標(biāo):1.認(rèn)識二元一次方程和二元一次方程組.
2.了解二元一次方程和二元一次方程組的解,會求二元一次方程的正整數(shù)解.
教學(xué)重點(diǎn):理解二元一次方程組的解的意義.
教學(xué)難點(diǎn):求二元一次方程的正整數(shù)解.
教學(xué)過程:
籃球聯(lián)賽中,每場比賽都要分出勝負(fù),每隊(duì)勝一場得2分.負(fù)一場得1分,某隊(duì)為了爭取較好的名次,想在全部22場比賽中得到40分,那么這個隊(duì)勝負(fù)場數(shù)分別是多少?
思考:這個問題中包含了哪些必須同時(shí)滿足的條件?設(shè)勝的場數(shù)是x,負(fù)的場數(shù)是y,你能用方程把這些條件表示出來嗎?
由問題知道,題中包含兩個必須同時(shí)滿足的條件:
勝的場數(shù)+負(fù)的場數(shù)=總場數(shù),勝場積分+負(fù)場積分=總積分.
這兩個條件可以用方程x+y=22
2x+y=40 表示.
上面兩個方程中,每個方程都含有兩個未知數(shù)(x和y),并且未知數(shù)的指數(shù)都是1,像這樣的方程叫做二元一次方程.
把兩個方程合在一起,寫成
x+y=22
2x+y=40
像這樣,把兩個二元一次方程合在一起,就組成了一個二元一次方程組.
探究:
滿足方程①,且符合問題的實(shí)際意義的x、y的值有哪些?把它們填入表中.
x
y
上表中哪對x、y的值還滿足方程②
一般地,使二元一次方程兩邊的值相等的兩個未知數(shù)的值,叫做二元一次方程的解.
二元一次方程組的兩個方程的公共解,叫做二元一次方程組的解.
例1(1)方程(a+2)x+(b-1)y=3是二元一次方程,試求a、b的取值范圍.
(2)方程xOaOC1+(a-2)y=2是二元一次方程,試求a的值.
例2 若方程x2mC1+5y3nC2=7是二元一次方程.求m、n的值
例3 已知下列三對值:
x=-6 x=10 x=10
y=-9 y=-6 y=-1
(1)
x-y=6
2x+31y=-11
哪幾對數(shù)值使方程x-y=6的左、右兩邊的值相等?
(2) 哪幾對數(shù)值是方程組 的解?
例4 求二元一次方程3x+2y=19的正整數(shù)解.
課堂練習(xí):教科書第94頁練習(xí)
作業(yè)布置:教科書第95頁3、4、5題