亚洲成a人片在线不卡一二三区,天天看在线视频国产,亚州Av片在线劲爆看,精品国产sm全部网站

        人工智能培訓心得體會(范文5篇)

        發(fā)布時間:2023-04-10 22:46:14

        • 文檔來源:用戶上傳
        • 文檔格式:WORD文檔
        • 文檔分類:培訓心得體會
        • 點擊下載本文

        千文網(wǎng)小編為你整理了多篇相關的《人工智能培訓心得體會(范文5篇)》,但愿對你工作學習有幫助,當然你在千文網(wǎng)還可以找到更多《人工智能培訓心得體會(范文5篇)》。

        第一篇:人工智能心得體會

        今天是我學習人工智能的第一堂課,也是我上大學以來第一次接觸人工智能這門課,通過老師的講解,我對人工智能有了一些簡單的感性認識,我知道了人工智能從誕生,發(fā)展到今天經(jīng)歷一個漫長的過程,許多人為此做出了不懈的努力。我覺得這門課真的是一門富有挑戰(zhàn)性的科學,而從事這項工作的人不僅要懂得計算機知識,還必須懂得心理學和哲學。

        人工智能在很多領域得到了發(fā)展,在我們的日常生活和學習中發(fā)揮了重要的作用。如:機器翻譯,機器翻譯是利用計算機把一種自然語言轉(zhuǎn)變成另一種自然語言的過程,用以完成這一過程的軟件系統(tǒng)叫做機器翻譯系統(tǒng)。利用這些機器翻譯系統(tǒng)我們可以很方便的完成一些語言翻譯工作。目前,國內(nèi)的機器翻譯軟件有很多,富有代表性意義的當屬“金山詞霸”,它可以迅速的查詢英文單詞和詞組句子翻譯,重要的是它還可以提供發(fā)音功能,為用戶提供了極大的方便。

        通過這堂課,我明白了人工智能發(fā)展的歷史和所處的地位,它始終處于計算機發(fā)展的最前沿。我相信人工智能在不久的將來將會得到更深一步的實現(xiàn),會創(chuàng)造出一個全新的人工智能世界。

        第二篇:人工智能心得體會

        通過這學期的學習,我對人工智能有了一定的感性認識,個人覺得人工智能是一門極富挑戰(zhàn)性的科學,從事這項工作的人必須懂得計算機知識,心理學和哲學。人工智能是包括十分廣泛的科學,它由不同的領域組成,如機器學習,計算機視覺等等,總的說來,人工智能研究的一個主要目標是使機器能夠勝任一些通常需要人類智能才能完成的復雜工作。人工智能的定義可以分為兩部分,即“人工”和“智能”。“人工”比較好理解,爭議性也不大。有時我們會要考慮什么是人力所能及制造的,或者人自身的智能程度有沒有高到可以創(chuàng)造人工智能的地步,等等。但總的來說,“人工系統(tǒng)”就是通常意義下的人工系統(tǒng)。關于什么是“智能”,就問題多多了。這涉及到其它諸如意識、自我、思維等等問題。人唯一了解的智能是人本身的智能,這是普遍認同的觀點。但是我們對我們自身智能的理解都非常有限,對構成人的智能的必要元素也了解有限,所以就很難定義什么是“人工”制造的“智能”了。關于人工智能一個大家比較容易接受的定義是這樣的:人工智能是人造的智能,是計算機科學、邏輯學、認知科學交叉形成的一門科學,簡稱ai。

        人工智能的發(fā)展歷史大致可以分為這幾個階段:

        第一階段:50年代人工智能的興起和冷落

        人工智能概念首次提出后,相繼出現(xiàn)了一批顯著的成果,如機器定理證明、跳棋程序、通用問題s求解程序、lisp表處理語言等。但由于消解法推理能力的有限,以及機器翻譯等的失敗,使人工智能走入了低谷。

        第二階段:60年代末到70年代,專家系統(tǒng)出現(xiàn),使人工智能研究出現(xiàn)新高潮。dendral化學質(zhì)譜分析系統(tǒng)、mycin疾病診斷和治療系統(tǒng)、prospectior探礦系統(tǒng)、hearsay―ii語音理解系統(tǒng)等專家系統(tǒng)的研究和開發(fā),將人工智能引向了實用化。并且,1969年成立了國際人工智能聯(lián)合會議

        第三階段:80年代,隨著第五代計算機的研制,人工智能得到了很大發(fā)展。日本1982年開始了”第五代計算機研制計劃”,即”知識信息處理計算機系統(tǒng)kips”,其目的是使邏輯推理達到數(shù)值運算那么快。雖然此計劃最終失敗,但它的開展形成了一股研究人工智能的熱潮。

        第四階段:80年代末,神經(jīng)網(wǎng)絡飛速發(fā)展。

        1987年,美國召開第一次神經(jīng)網(wǎng)絡國際會議,宣告了這一新學科的誕生。此后,各國在神經(jīng)網(wǎng)絡方面的投資逐漸增加,神經(jīng)網(wǎng)絡迅速發(fā)展起來。

        第五階段:90年代,人工智能出現(xiàn)新的研究高潮

        由于網(wǎng)絡技術特別是國際互連網(wǎng)的技術發(fā)展,人工智能開始由單個智能主體研究轉(zhuǎn)向基于網(wǎng)絡環(huán)境下的分布式人工智能研究。不僅研究基于同一目標的分布式問題求解,而且研究多個智能主體的多目標問題求解,將人工智能更面向?qū)嵱?。另外,由于hopfield多層神經(jīng)網(wǎng)絡模型的提出,使人工神經(jīng)網(wǎng)絡研究與應用出現(xiàn)了欣欣向榮的景象。人工智能已深入到社會生活的各個領域。

        對人工智能對世界的影響的感受及未來暢想

        最近看了電影《黑客帝國》一系列,對其中的科幻生活有了很大的興趣,不覺有了疑問:現(xiàn)在的世界是否會如電影中一樣呢?人工智能的神話是否會發(fā)生

        在當前社會中的呢?

        在黑客帝國的世界里,程序員成為了耶穌,控制著整個世界,黑客帝國之所以成為經(jīng)典,我認為,不是因為飛來飛去的超級人物,而是因為她暗自揭示了一個人與計算機世界的關系,一個發(fā)展趨勢。誰知道200年以后會不會是智能機器統(tǒng)治了世界?

        人類正向信息化的時代邁進,信息化是當前時代的主旋律。信息抽象結晶為知識,知識構成智能的基礎。因此,信息化到知識化再到智能化,必將成為人類社會發(fā)展的趨勢。人工智能已經(jīng)并且廣泛而有深入的結合到科學技術的各門學科和社會的各個領域中,她的概念,方法和技術正在各行各業(yè)廣泛滲透。而在我們的身邊,智能化的例子也屢見不鮮。在軍事、工業(yè)和醫(yī)學等領域中人工智能的應用已經(jīng)顯示出了它具有明顯的經(jīng)濟效益潛力,和提升人們生活水平的最大便利性和先進性。

        智能是一個寬泛的概念。智能是人類具有的特征之一。然而,對于什么是人類智能(或者說智力),科學界至今還沒有給出令人滿意的定義。有人從生物學角度定義為“中樞神經(jīng)系統(tǒng)的功能”,有人從心理學角度定義為“進行抽象思維的能力”,甚至有人同義反復地把它定義為“獲得能力的能力”,或者不求甚解地說它“就是智力測驗所測量的那種東西”。這些都不能準確的說明人工智能的確切內(nèi)涵。

        雖然難于下定義,但人工智能的發(fā)展已經(jīng)是當前信息化社會的迫切要求,同時研究人工智能也對探索人類自身智能的奧秘提供有益的幫助。所以每一次人工智能技術的進步都將帶動計算機科學的大跨步前進。如果將現(xiàn)有的計算機技術、人工智能技術及自然科學的某些相關領域結合,并有一定的理論實踐依據(jù),計算機將擁有一個新的發(fā)展方向。

        個人覺得研究人工智能的目的,一方面是要創(chuàng)造出具有智能的機器,另一方面是要弄清人類智能的本質(zhì),因此,人工智能既屬于工程的范疇,又屬于科學的范疇。通過研究和開發(fā)人工智能,可以輔助,部分替代甚至拓寬人類的智能,使計算機更好的造福人類。

        第三篇:人工智能心得體會

        人工智能學習心得

        今天是我學習人工智能的第一堂課,也是我上大學以來第一次接觸人工智能這門課,通過老師的講解,我對人工智能有了一些簡單的感性認識,我知道了人工智能從誕生,發(fā)展到今天經(jīng)歷一個漫長的過程,許多人為此做出了不懈的努力。我覺得這門課真的是一門富有挑戰(zhàn)性的科學,而從事這項工作的人不僅要懂得計算機知識,還必須懂得心理學和哲學。

        人工智能在很多領域得到了發(fā)展,在我們的日常生活和學習中發(fā)揮了重要的作用。如:機器翻譯,機器翻譯是利用計算機把一種自然語言轉(zhuǎn)變成另一種自然語言的過程,用以完成這一過程的軟件系統(tǒng)叫做機器翻譯系統(tǒng)。利用這些機器翻譯系統(tǒng)我們可以很方便的完成一些語言翻譯工作。目前,國內(nèi)的機器翻譯軟件有很多,富有代表性意義的當屬“金山詞霸”,它可以迅速的查詢英文單詞和詞組句子翻譯,重要的是它還可以提供發(fā)音功能,為用戶提供了極大的方便。

        通過這堂課,我明白了人工智能發(fā)展的歷史和所處的地位,它始終處于計算機發(fā)展的最前沿。我相信人工智能在不久的將來將會得到更深一步的實現(xiàn),會創(chuàng)造出一個全新的人工智能世界。

        第四篇:人工智能心得體會

        人工智能主要研究用人工方法模擬和擴展人的智能,最終實現(xiàn)機器智能。人工智能研究與人的思維研究密切相關。邏輯學始終是人工智能研究中的基礎科學問題,它為人工智能研究提供了根本觀點與方法。

        1、人工智能學科的誕生

        12世紀末13世紀初,西班牙羅門?盧樂提出制造可解決各種問題的通用邏輯機。17世紀,英國培根在《新工具》中提出了歸納法。隨后,德國萊布尼茲做出了四則運算的手搖計算器,并提出了“通用符號”和“推理計算”的思想。19世紀,英國布爾創(chuàng)立了布爾代數(shù),奠定了現(xiàn)代形式邏輯研究的基礎。

        德國弗雷格完善了命題邏輯,創(chuàng)建了一階謂詞演算系統(tǒng)。20世紀,哥德爾對一階謂詞完全性定理與N形式系統(tǒng)的不完全性定理進行了證明。在此基礎上,克林對一般遞歸函數(shù)理論作了深入的研究,建立了演算理論。英國圖靈建立了描述算法的機械性思維過程,提出了理想計算機模型(即圖靈機),創(chuàng)立了自動機理論。這些都為1945年匈牙利馮?諾依曼提出存儲程序的思想和建立通用電子數(shù)字計算機的馮?諾依曼型體系結構,以及1946年美國的莫克利和埃克特成功研制世界上第一臺通用電子數(shù)學計算機ENIAC做出了開拓性的貢獻。

        以上經(jīng)典數(shù)理邏輯的理論成果,為1956年人工智能學科的誕生奠定了堅實的邏輯基礎。

        現(xiàn)代邏輯發(fā)展動力主要來自于數(shù)學中的公理化運動。20世紀邏輯研究嚴重數(shù)學化,發(fā)展出來的邏輯被恰當?shù)胤Q為“數(shù)理邏輯”,它增強了邏輯研究的深度,使邏輯學的發(fā)展繼古希臘邏輯、歐洲中世紀邏輯之后進入第三個高峰期,并且對整個現(xiàn)代科學特別是數(shù)學、哲學、語言學和計算機科學產(chǎn)生了非常重要的影響。

        2、邏輯學的發(fā)展

        2.1邏輯學的大體分類

        邏輯學是一門研究思維形式及思維規(guī)律的科學。從17世紀德國數(shù)學家、哲學家萊布尼茲(niz)提出數(shù)理邏輯以來,隨著人工智能的一步步發(fā)展的需求,各種各樣的邏輯也隨之產(chǎn)生。邏輯學大體上可分為經(jīng)典邏輯、非經(jīng)典邏輯和現(xiàn)代邏輯。經(jīng)典邏輯與模態(tài)邏輯都是二值邏輯。多值邏輯,是具有多個命題真值的邏輯,是向模糊邏輯的逼近。模糊邏輯是處理具有模糊性命題的邏輯。概率邏輯是研究基于邏輯的概率推理。

        2.2泛邏輯的基本原理

        當今人工智能深入發(fā)展遇到的一個重大難題就是專家經(jīng)驗知識和常識的推理?,F(xiàn)代邏輯迫切需要有一個統(tǒng)一可靠的,關于不精確推理的邏輯學作為它們進一步研究信息不完全情況下推理的基礎理論,進而形成一種能包容一切邏輯形態(tài)和推理模式的,靈活的,開放的,自適應的邏輯學,這便是柔性邏輯學。而泛邏輯學就是研究剛性邏輯學(也即數(shù)理邏輯)和柔性邏輯學共同規(guī)律的邏輯學。

        泛邏輯是從高層研究一切邏輯的一般規(guī)律,建立能包容一切邏輯形態(tài)和推理模式,并能根據(jù)需要自由伸縮變化的柔性邏輯學,剛性邏輯學將作為一個最小的內(nèi)核存在其中,這就是提出泛邏輯的根本原因,也是泛邏輯的最終歷史使命。

        3、邏輯學在人工智能學科的研究方面的應用

        邏輯方法是人工智能研究中的主要形式化工具,邏輯學的研究成果不但為人工智能學科的誕生奠定了理論基礎,而且它們還作為重要的成分被應用于人工智能系統(tǒng)中。

        3.1經(jīng)典邏輯的應用

        人工智能誕生后的20年間是邏輯推理占統(tǒng)治地位的時期。1963年,紐厄爾、西蒙等人編制的“邏輯理論機”數(shù)學定理證明程序(LT)。在此基礎之上,紐厄爾和西蒙編制了通用問題求解程序(GPS),開拓了人工智能“問題求解”的一大領域。經(jīng)典數(shù)理邏輯只是數(shù)學化的形式邏輯,只能滿足人工智能的部分需要。

        3.2非經(jīng)典邏輯的應用

        (1)不確定性的推理研究

        人工智能發(fā)展了用數(shù)值的方法表示和處理不確定的信息,即給系統(tǒng)中每個語句或公式賦一個數(shù)值,用來表示語句的不確定性或確定性。比較具有代表性的有:1976年杜達提出的主觀貝葉斯模型,1978年查德提出的可能性模型,1984年邦迪提出的發(fā)生率計算模型,以及假設推理、定性推理和證據(jù)空間理論等經(jīng)驗性模型。

        歸納邏輯是關于或然性推理的邏輯。在人工智能中,可把歸納看成是從個別到一般的推理。借助這種歸納方法和運用類比的方法,計算機就可以通過新、老問題的相似性,從相應的知識庫中調(diào)用有關知識來處理新問題。

        (2)不完全信息的推理研究

        常識推理是一種非單調(diào)邏輯,即人們基于不完全的信息推出某些結論,當人們得到更完全的信息后,可以改變甚至收回原來的結論。非單調(diào)邏輯可處理信息不充分情況下的推理。20世紀80年代,賴特的缺省邏輯、麥卡錫的限定邏輯、麥克德莫特和多伊爾建立的NML非單調(diào)邏輯推理系統(tǒng)、摩爾的自認知邏輯都是具有開創(chuàng)性的非單調(diào)邏輯系統(tǒng)。常識推理也是一種可能出錯的不精確的推理,即容錯推理。

        此外,多值邏輯和模糊邏輯也已經(jīng)被引入到人工智能中來處理模糊性和不完全性信息的推理。多值邏輯的三個典型系統(tǒng)是克林、盧卡西維茲和波克萬的三值邏輯系統(tǒng)。模糊邏輯的研究始于20世紀20年代盧卡西維茲的研究。1972年,扎德提出了模糊推理的關系合成原則,現(xiàn)有的絕大多數(shù)模糊推理方法都是關系合成規(guī)則的變形或擴充。

        4、人工智能――當代邏輯發(fā)展的動力

        現(xiàn)代邏輯創(chuàng)始于19世紀末葉和20世紀早期,其發(fā)展動力主要來自于數(shù)學中的公理化運動。21世紀邏輯發(fā)展的主要動力來自哪里?筆者認為,計算機科學和人工智能將至少是21世紀早期邏輯學發(fā)展的主要動力源泉,

        并將由此決定21世紀邏輯學的另一幅面貌。由于人工智能要模擬人的智能,它的難點不在于人腦所進行的各種必然性推理,而是最能體現(xiàn)人的智能特征的能動性、創(chuàng)造性思維,

        這種思維活動中包括學習、抉擇、嘗試、修正、推理諸因素。例如,選擇性地搜集相關的經(jīng)驗證據(jù),在不充分信息的基礎上做出嘗試性的判斷或抉擇,不斷根據(jù)環(huán)境反饋調(diào)整、修正自己的行為,由此達到實踐的成功。于是,邏輯學將不得不比較全面地研究人的思維活動,并著重研究人的思維中最能體現(xiàn)其能動性特征的各種不確定性推理,由此發(fā)展出的邏輯理論也將具有更強的可應用性。

        5、結語

        人工智能的產(chǎn)生與發(fā)展和邏輯學的發(fā)展密不可分。

        一方面我們試圖找到一個包容一切邏輯的泛邏輯,使得形成一個完美統(tǒng)一的邏輯基礎;另一方面,我們還要不斷地爭論、更新、補充新的邏輯。如果二者能夠有機地結合,將推動人工智能進入一個新的階段。概率邏輯大都是基于二值邏輯的,目前許多專家和學者又在基于其他邏輯的基礎上研究概率推理,

        使得邏輯學盡可能滿足人工智能發(fā)展的各方面的需要。就目前來說,一個新的泛邏輯理論的發(fā)展和完善需要一個比較長的時期,那何不將“百花齊放”與“一統(tǒng)天下”并行進行,各自發(fā)揮其優(yōu)點,為人工智能的發(fā)展做出貢獻。目前,許多制約人工智能發(fā)展的因素仍有待于解決,技術上的突破,還有賴于邏輯學研究上的突破。在對人工智能的研究中,我們只有重視邏輯學,努力學習與運用并不斷深入挖掘其基本內(nèi)容,拓寬其研究領域,才能更好地促進人工智能學科的發(fā)展。

        第五篇:人工智能心得體會

        一、在中小學開展的機器人教育具有重要的意義。主要體現(xiàn)在以下幾個方面:

        1、促進教育方式的變革,培養(yǎng)學生的綜合能力

        在機器人教育中,課堂以學生為中心,教師作為指導者提供學習材料和建議,學生必須自己去學習知識,構建知識體系,提出自己的解決方案,從而有效培養(yǎng)了動手能力、學生創(chuàng)新思維能力。

        2、有效激發(fā)學習興趣、動機“寓教于樂”是我們教育追求的目標。這也是當前教育游戲成為當前研究熱點一個原因。學習興趣是學生的學習成功重要因素。機器人教育可以通過比賽形式,得到周圍環(huán)境的認可和贊賞,能夠激發(fā)學生學習的興趣,激發(fā)學生的斗志和拼博精神。

        3、培養(yǎng)學生的團隊協(xié)作能力

        機器人教育中大多以小組形式開始,機器人的學習、競賽實際上是一個團體學習的過程。它需要學習者團結協(xié)作,包容小組其他成員的缺點和不足,能夠與他人進行有效溝通與交流。在實踐鍛煉中提高自己的團隊協(xié)作能力,其效果比普通的教育方式、方法更加有效。

        4、擴大知識面,轉(zhuǎn)換思維方式

        在機器人的學習過程中,通過制作機器人過程中的實際問題解決,可以學到模擬電路、力學等方面知識,不但對物理學科、計算機學科的教學起到促進作用,同時也擴大、加深了學生科學知識;通過完成任務和模擬項目使學生在為機器人擴充接口的過程中學習有關數(shù)字電路方面的知識;通過為機器人編寫程序,不但學到計算機編程語言、算法等顯性知識,更有意義的是通過為機器人編寫程序?qū)W到科學而高效的思維方式,邏輯判斷思維、系統(tǒng)思維等隱性知識

        二、中小學機器人教學活動的幾點做法:

        考慮到中小學生和機器人課程的特點,為培養(yǎng)學生的綜合設計能力和創(chuàng)新能力,本人認為機器人教學應該在教學內(nèi)容、教學方法、教學組織方面一改其它課程的教學模式,走出一條新的路子來。

        1、教學內(nèi)容:機器人教學應注意學生知識廣度的學習。雖然僅通過一門課程來擴充學生的知識面效果有限,但是由于機器人的設計涉及到光機電一體化、自動控制、人工智能等多方面問題,既有硬件設計也有軟件設計,所以是讓學生了解和掌握大量知識的絕好機會。知識不追求深度,只要求廣度。例如在確定教學內(nèi)容時,注意力不要僅放在競賽用輪式成品機器人上,還應該關注單片機、嵌入式CPU、各種傳感器、電機、機械部件等軟硬件技術在機器人和自動化技術上的應用。

        2、教學方法:應根據(jù)學段和學科情況選擇不同的綜合設計教學方法。如:小學階段可讓學生完成輪式競賽用機器人的功能模塊組裝的設計;初中階段可進行生活與學習中實用機器人的創(chuàng)意設計;高中信息技術課中可重點對機器人智能軟件算法進行設計;而高中通用技術課中可重點對機器人的電氣部分、傳感器部分、動力部分和機械部分進行相關設計??傊?,教學方法應該側重綜合設計,而不是放在問題的分析上。

        3、教學組織機器人教學應事先營造好供學生動手動腦進行設計活動的環(huán)境。提供必要的設備和工具(包括工具軟件),組織學生進行探究式學習,特別應注意探究式學習三個要素(任務驅(qū)動、協(xié)作學習、教師引導)的構成,讓學生能夠充分化動手。同時,還應提倡設計過程的規(guī)范化,用于提高學生的綜合設計能力。教學活動不僅在課堂上進行,還應組織學生在課余時間做適當?shù)墓ぷ?,以保證教學的完整性和有效性。

        教育機器人活動受到越來越多的師生歡迎,教育機器人必將為我國的素質(zhì)教育做出應有的貢獻,教育機器人的前途是光明的。

        網(wǎng)址:http://puma08.com/xdth/pxxdth/1422102.html

        聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻自行上傳,本網(wǎng)站不擁有所有權,未作人工編輯處理,也不承擔相關法律責任。如果您發(fā)現(xiàn)有涉嫌版權的內(nèi)容,歡迎發(fā)送郵件至89702570@qq.com 進行舉報,并提供相關證據(jù),工作人員會在5個工作日內(nèi)聯(lián)系你,一經(jīng)查實,本站將立刻刪除涉嫌侵權內(nèi)容。