千文網(wǎng)小編為你整理了多篇相關(guān)的《圓的弦切角定理證明》,但愿對(duì)你工作學(xué)習(xí)有幫助,當(dāng)然你在千文網(wǎng)還可以找到更多《圓的弦切角定理證明》。
弦切角定義
頂點(diǎn)在圓上,一邊和圓相交,另
圖示
一邊和圓相切的角叫做弦切角。(弦切角就是切線與弦所夾的角) 如右圖所示,直線PT切圓O于點(diǎn)C,BC、AC為圓O的弦,∠TCB,∠TCA,∠PCA,∠PCB都為弦切角。
弦切角定理 弦切角定理:弦切角的度數(shù)等于它所夾的弧的圓心角的度數(shù)的一半. 弦切角定理證明: 證明一:設(shè)圓心為O,連接OC,OB,。 ∵∠TCB=90-∠OCB ∵∠BOC=180-2∠OCB ∴,∠BOC=2∠
TCB(定理:弦切角的度數(shù)等于它所夾的弧所對(duì)的圓心角的度數(shù)的一半) ∵∠BOC=2∠CAB(圓心角等于圓周角的兩倍) ∴∠TCB=∠CAB(定理:弦切角的度數(shù)等于它所夾的弧的圓周角) 證明已知:AC是⊙O的弦,AB是⊙O的切線,A為切點(diǎn),弧是弦切角∠BAC所夾的弧. 求證:(弦切角定理) 證明:分三種情況:
(1) 圓心O在∠BAC的一邊AC上 ∵AC為直徑,AB切⊙O于A, ∴弧CmA=弧CA ∵為半圓, ∴∠CAB=90=弦CA所對(duì)的圓周角
B點(diǎn)應(yīng)在A點(diǎn)左側(cè)
(2) 圓心O在∠BAC的內(nèi)部. 過(guò)A作直徑AD交⊙O于D, 若在優(yōu)弧m所對(duì)的
劣弧上有一點(diǎn)E 那么,連接EC、ED、EA 則有:∠CED=∠CAD、∠DEA=∠DAB ∴ ∠CEA=∠CAB ∴ (弦切角定理)
(3) 圓心O在∠BAC的外部, 過(guò)A作直徑AD交⊙O于D 那么 ∠CDA+∠CAD=∠CAB+∠CAD=90 ∴∠CDA=∠CAB ∴(弦切角定理)
弦切角推論
推論內(nèi)容
若兩弦切角所夾的弧相等,則這兩個(gè)弦切角也相等
應(yīng)用舉例
例1:如圖,在Rt△ABC中,∠C=90,以AB為弦的⊙O與AC相切于點(diǎn)A,∠CBA=60° , AB=a 求BC長(zhǎng). 解:連結(jié)OA,OB. ∵在Rt△ABC中, ∠C=90 ∴∠BAC=30° ∴BC=1/2a(RT△中30°角所對(duì)邊等于斜邊的一半)
例2:如圖,AD是ΔABC中∠BAC的平分線,經(jīng)過(guò)點(diǎn)A的⊙O與BC切于點(diǎn)D,與AB,AC分別相交于E,F(xiàn). 求證:EF∥BC. 證明:連DF. AD是∠BAC的平分線 ∠BAD=∠DAC ∠EFD=∠BAD ∠EFD=∠DAC ⊙O切BC于D ∠FDC=∠DAC ∠EFD=∠FDC EF∥BC
例3:如圖,ΔABC內(nèi)接于⊙O,AB是⊙O直徑,CD⊥AB于D,MN切⊙O于C, 求
證:AC平分∠MCD,BC平分∠NCD. 證明:∵AB是⊙O直徑 ∴∠ACB=90 ∵CD⊥AB ∴∠ACD=∠B, ∵M(jìn)N切⊙O于C ∴∠MCA=∠B, ∴∠MCA=∠ACD, 即AC平分∠MCD, 同理:BC平分∠NCD.