千文網(wǎng)小編為你整理了多篇相關(guān)的《函數(shù)極限的性質(zhì)證明》,但愿對你工作學習有幫助,當然你在千文網(wǎng)還可以找到更多《函數(shù)極限的性質(zhì)證明》。
第一篇:函數(shù)極限的證明
函數(shù)極限的證明
(一)時函數(shù)的極限:
以時和為例引入.介紹符號:的意義,的直觀意義.
定義(和.)
幾何意義介紹鄰域其中為充分大的正數(shù).然后用這些鄰域語言介紹幾何意義.
例1驗證例2驗證例3驗證證……
(二)時函數(shù)的極限:
由考慮時的極限引入.
定義函數(shù)極限的“”定義.
幾何意義.
用定義驗證函數(shù)極限的基本思路.
例4驗證例5驗證例6驗證證由=
為使需有為使需有于是,倘限制,就有
例7驗證例8驗證(類似有(三)單側(cè)極限:
1.定義:單側(cè)極限的定義及記法.
幾何意義:介紹半鄰域然后介紹等的幾何意義.
例9驗證證考慮使的2.單側(cè)極限與雙側(cè)極限的關(guān)系:
Th類似有:例10證明:極限不存在.
例11設(shè)函數(shù)在點的某鄰域內(nèi)單調(diào).若存在,則有
=§2函數(shù)極限的性質(zhì)(3學時)
教學目的:使學生掌握函數(shù)極限的基本性質(zhì)。
教學要求:掌握函數(shù)極限的基本性質(zhì):唯一性、局部保號性、不等式性質(zhì)以及有理運算性等。
教學重點:函數(shù)極限的性質(zhì)及其計算。
教學難點:函數(shù)極限性質(zhì)證明及其應用。
教學方法:講練結(jié)合。
一、組織教學:
我們引進了六種極限:,.以下以極限為例討論性質(zhì).均給出證明或簡證.二、講授新課:
(一)函數(shù)極限的性質(zhì):以下性質(zhì)均以定理形式給出.
1.唯一性:
2.局部有界性:
3.局部保號性:
4.單調(diào)性(不等式性質(zhì)):
Th4若和都存在,且存在點的空心鄰域,使,都有證設(shè)=(現(xiàn)證對有)
註:若在Th4的條件中,改“”為“”,未必就有以舉例說明.
5.迫斂性:
6.四則運算性質(zhì):(只證“+”和“”)
(二)利用極限性質(zhì)求極限:已證明過以下幾個極限:
(注意前四個極限中極限就是函數(shù)值)
這些極限可作為公式用.在計算一些簡單極限時,有五組基本極限作為公式用,我們將陸續(xù)證明這些公式.
利用極限性質(zhì),特別是運算性質(zhì)求極限的原理是:通過有關(guān)性質(zhì),把所求極限化為基本極限,代入基本極限的值,即計算得所求極限.
例1(利用極限和)
例2例3註:關(guān)于的有理分式當時的極限.
例4
例5例6例7
第二篇:元函數(shù)極限證明
二元函數(shù)極限證明
二元函數(shù)極限證明
設(shè)p=f(x,y),p0=(a,b),當p→p0時f(x,y)的極限是x,y同時趨向于a,b時所得到的稱為二重極限。
此外,我們還要討論x,y先后相繼地趨于a,b時的極限,稱為二次極限。
我們必須注意有以下幾種情形:’
(1)兩個二次極限都不存在而二重極限仍有可能存在 (2)兩個二次極限存在而不相等
(3)兩個二次極限存在且相等,但二重極限仍可能不存在 2 函數(shù)f(x)當x→x0時極限存在,不妨設(shè):limf(x)=a(x→x0) 根據(jù)定義:對任意ε>0,存在δ>0,使當|x-x0|
而|x-x0|
又因為ε有任意性,故可取ε=1,則有:|f(x)-a|0,當任意x屬于x0的某個鄰域u(x0;δ)時,有|f(x)| 證畢
3首先,我的方法不正規(guī),其次,正確不正確有待考察。
1 / 29
二元函數(shù)極限證明
1,y以y=x^2-x的路徑趨于0limitedsin(x+y)/x^2=limitedsinx^2/x^2=1而y=x的路徑趨于0結(jié)果是無窮大。
2,3可以用類似的方法,貌似同濟書上是這么說的,二元函數(shù)在該點極限存在,是p(x,y)以任何方式趨向于該點。
4 f(x,y)={(x^2+y^2)/(|x|+|y|)}*sin(1/x) 顯然有y->0,f->(x^2/|x|)*sin(1/x)存在
當x->0,f->(y^2/|y|)*sin(1/x),sin(1/x)再0處是波動的所以不存在
而當x->0,y->0時
由|sin(1/x)|0,y->0時,f的極限就為0 這個就是你說的,唯一不一樣就是非正常極限是不存在而不是你說的
正無窮或負無窮或無窮,我想這個就可以了 就我這個我就線了好久了 5
2 / 29
二元函數(shù)極限證明
(一)時函數(shù)的極限: 以時和為例引入.介紹符號:的意義,的直觀意義.定義(和.) 幾何意義介紹鄰域其中為充分大的正數(shù).然后用這些鄰域語言介紹幾何意義.例1驗證例2驗證例3驗證證…… (二)時函數(shù)的極限: 由考慮時的極限引入.定義函數(shù)極限的“”定義.幾何意義.用定義驗證函數(shù)極限的基本思路.例4驗證例5驗證例6驗證證由= 為使需有為使需有于是,倘限制,就有 例7驗證例8驗證(類似有(三)單側(cè)極限: 1.定義:單側(cè)極限的定義及記法.幾何意義:介紹半鄰域然后介紹等的幾何意義.例9驗證證考慮使的2.單側(cè)極限與雙側(cè)極限的關(guān)系: th類似有:例10證明:極限不存在.例11設(shè)函數(shù)在點的某鄰域內(nèi)單調(diào).若存在,則有
3 / 29
二元函數(shù)極限證明
=§2函數(shù)極限的性質(zhì)(3學時) 教學目的:使學生掌握函數(shù)極限的基本性質(zhì)。
教學要求:掌握函數(shù)極限的基本性質(zhì):唯一性、局部保號性、不等式性質(zhì)以及有理運算性等。
教學重點:函數(shù)極限的性質(zhì)及其計算。 教學難點:函數(shù)極限性質(zhì)證明及其應用。 教學方法:講練結(jié)合。 一、組織教學:
我們引進了六種極限:,.以下以極限為例討論性質(zhì).均給出證明或簡證.二、講授新課:
(一)函數(shù)極限的性質(zhì):以下性質(zhì)均以定理形式給出.1.唯一性: 2.局部有界性: 3.局部保號性: 4.單調(diào)性(不等式性質(zhì)): th4若和都存在,且存在點的空心鄰域,使,都有證設(shè)=(現(xiàn)證對有) 註:若在th4的條件中,改“”為“”,未必就有以舉例說明.5.迫斂性: 6.四則運算性質(zhì):(只證“+”和“”)
4 / 29
二元函數(shù)極限證明
(二)利用極限性質(zhì)求極限:已證明過以下幾個極限: (注意前四個極限中極限就是函數(shù)值) 這些極限可作為公式用.在計算一些簡單極限時,有五組基本極限作為公式用,我們將陸續(xù)證明這些公式.利用極限性質(zhì),特別是運算性質(zhì)求極限的原理是:通過有關(guān)性質(zhì),把所求極限化為基本極限,代入基本極限的值,即計算得所求極限.例1(利用極限和) 例2例3註:關(guān)于的有理分式當時的極限.例4 例5例6例7 §2二元函數(shù)的極限 (一)教學目的:
掌握二元函數(shù)的極限的定義,了解重極限與累次極限的區(qū)別與聯(lián)系.
(二)教學內(nèi)容:二元函數(shù)的極限的定義;累次極限. 基本要求:
(1)掌握二元函數(shù)的極限的定義,了解重極限與累次極限的區(qū)別與聯(lián)系,熟悉判別極限存在性的基本方法.
(2)較高要求:掌握重極限與累次極限的區(qū)別與聯(lián)系,能用來處理極限存在性問題.
5 / 29
二元函數(shù)極限證明
(三)教學建議:
(1)要求學生弄清一元函數(shù)極限與多元函數(shù)極限的聯(lián)系與區(qū)別,教會他們求多元函數(shù)極
限的方法.
(2)對較好學生講清重極限與累次極限的區(qū)別與聯(lián)系,通過舉例介紹判別極限存在性的較完整的方法.
一二元函數(shù)的極限
先回憶一下一元函數(shù)的極限:limf(x)?a的“???”定義(c31): x?x0 0設(shè)函數(shù)f(x)在x0的某一空心鄰域u(x0,?1)內(nèi)由定義,如果對 ???0,當
x?u(x0,?)
,
即
|x?x0|??
時
,
都
有|f(x)?a|??,???0,???1,
則稱x?x0時,函數(shù)f(x)的極限是a.類似的,我們也可以定義二元函數(shù)的極限如下:
設(shè)二元函數(shù)f(x,y)為定義在d?r2上的二元函數(shù),在點p0(x0,y0)為d的一個聚點,
a是一個確定的常數(shù),如果對???0,???0,使得當p(x,y)?u(p0,?)?d時,0都有|f(p)?a|??,則稱f在d上當p?p0時,以a為極限。記作
p?p0p?dlimf(p)?a
6 / 29
二元函數(shù)極限證明
也可簡寫為limf(p)?a或 p?p0(x,y)?(x0,y0) 2limf(x,y)?a例1用定義驗證 2lim(x,y)?(2,1)2(x?xy?y)?7222明:|x?xy?y?7|?|x?x?6?xy?x?y?1| ?|x?3||x?2|?|x?y?1||y?1| 限制在(2,1)的鄰域{(x,y)||x?2|?1,|y?1|?1} |x?3|?6, |x?y?1|?6 取??min{1,?/6},則有 |x?xy?y|?? 由二元函數(shù)極限定義lim (x,y)?(2,1) (x?xy?y)?7 22 22 ?x?y ,(x,y)?(0,0)?xy22 例2f(x,y)??x?y, ?0,(x,y)?(0,0)?
證
7 / 29
二元函數(shù)極限證明
證明lim (x,y)?(0,0) f(x,y)?0 x?yx?y 22 22 證|f(x,y)|?|xy 所以 lim (x,y)?(0,0) |?|xy| lim (x,y)?(0,0) |f(x,y)|?lim (x,y)?(0,0) |xy|?0 |f(x,y)|?0 對于二元函數(shù)的極限的定義,要注意下面一點: p?p0
8 / 29
二元函數(shù)極限證明
limf(p)?a是指:p(x,y)以任何方式趨于p0(x0,y0),包括沿任何直線,沿任
何曲線趨于p0(x0,y0)時,f(x,y)必須趨于同一確定的常數(shù)。 對于一元函數(shù),x僅需沿x軸從x0的左右兩個方向趨于x0,但是對于二元函數(shù),p趨于p0的路線有無窮多條,只要有兩條路線,p趨于p0時,函數(shù)f(x,y)的值趨于不同的常數(shù),二元函數(shù)在p0點極限就不存在。
?1,0?y?x2 例1二元函數(shù)f(x,y)?? ?0,rest 請看圖像(x62),盡管p(x,y)沿任何直線趨于原點時f(x,y)都趨于零,但也不能說該函數(shù)在原點的極限就是零,因為當p(x,y)沿拋物線y?kx,0?k?1時,f(x,y)的值趨于1而不趨于零,所以極限不存在。
(考慮沿直線y?kx的方向極限).?x2y ,? 例2設(shè)函數(shù)f(x,y)??x2?y2 ?0,? (x.,y)?(0,0)(x,y)?(0,0) 求證limf(x,y)?0
9 / 29
二元函數(shù)極限證明
x?0 y?0 證明因為|f(x,y)?0|? x|y|x?y ? x|y|x ?|y| 所以,當(x,y)?(0,0)時,f(x,y)?0。
請看它的圖像,不管p(x,y)沿任何方向趨于原點,f(x,y)的值都趨于零。
通常為證明極限limf(p)不存在,可證明沿某個方向的極限不存在,或證明沿某兩
p?p0 個方向的極限不相等,或證明方向極限與方向有關(guān).但應注意,沿任何方向的極限存在且相等??全面極限存在.例3 設(shè)函數(shù)
(x,y)?(0,0)(x,y)?(0,0) ?xy ,?22 f(x,y)??x?y
10 / 29
二元函數(shù)極限證明
?0,? 證明函數(shù)f(x,y)在原點處極限不存在。 證明盡管p(x,y)沿x軸和y軸
趨于原點時(f(x,y)的值都趨于零,但沿直線y?mx趨于原點時 x?mxx?(mx) f(x,y)?? mx 22 (1?m)x ? m1?m 沿斜率不同的直線趨于原點時極限不一樣,請看它的圖象,例1沿任何路線趨于原點時,
極
限都是0,但例2沿不同的路線趨于原點時,函數(shù)趨于不同的值,所以其極限不存在。
例4 非正常極限極限 lim (x,y)?(x0,y0)
11 / 29
二元函數(shù)極限證明
判別函數(shù)f(x,y)? xy?1?1x?y 在原點是否存在極限.f(x,y)???的定義: 12x?3y 例1設(shè)函數(shù)f(x,y)?證明limf(x,y)?? x?0y?0 證| 12x?3y |?| 13(x?y) | 只要取?? 16m |x?0|??,|y?0|??時,都有 | 12x?3y16? 22 |?| 13(x?y)
12 / 29
二元函數(shù)極限證明
| ??m 12x?3y 請看它的圖象,因此是無窮大量。 例2求下列極限:i) lim xyx?y 22 ;ii) (x,y)?(0,0)(x,y)?(3,0) lim sinxyy ; iii) (x,y)?(0,0) lim xy?1?1xy ;iv) (x,y)?(0,0) lim
13 / 29
二元函數(shù)極限證明
ln(1?x?y) x?y 22 .二.累次極限:累次極限
前面講了p(x,y)以任何方式趨于p0(x0,y0)時的極限,我們稱它為二重極限,對于兩個自變量x,y依一定次序趨于x0,y0時f(x,y)的極限,稱為累次極限。對于二元函數(shù)f(x,y)在p0(x0,y0)的累次極限由兩個
limlimf(x,y)和limlimf(x,y) y?y0x?x0 x?x0y?y0 例1 f(x,y)? xyx?yx?yx?y 222 ,求在點(0,0)的兩個累次極限.22 例2f(x,y)?,求在點(0,0)的兩個累次極限.例3f(x,y)?xs(請你支持:)in
14 / 29
二元函數(shù)極限證明
1y ?ysin 1x ,求在點(0,0)的兩個累次極限.二重極限與累次極限的關(guān)系: (1)兩個累次極限可以相等也可以不相等,所以計算累次極限
例函數(shù)f(x,y)? x?y?x?y x?y 22 的兩個累次極限是y?yyx?xx 22 limlim x?y?x?y x?yx?y?x?y x?y y?0x?0 ?lim y?0
15 / 29 時一定要注意不能隨意改變它們的次序。二元函數(shù)極限證明
?lim(y?1)??1 y?0 ?lim(x?1)?1 x?0 limlim x?0y?0 ?lim x?0 (2)兩個累次極限即使都存在而且相等,也不能保證二重極限存在例f(x,y)? xyx?y xyx?y ,兩個累次極限都存在 limlim y?0x?0 ?0,limlim xyx?y x?0y?0 ?0
16 / 29
二元函數(shù)極限證明
但二重極限卻不存在,事實上若點p(x,)沿直線y?kx趨于原點時,
kx f(x,y)? x?(kx) ? k1?k 二重極限存在也不能保證累次極限存在
二重極限存在時,兩個累次極限可以不存在.例函數(shù)f(x,y)?xsin 1y?ysin 1x 由|f(x,y)|?|x|?|y|?0,(x,y)?(0,0).可見二重極限存在,但 1x limsin x?0 和limsin y?0 1y 不存在,從而兩個累次極限不存在。 (4)二重極限極限lim
17 / 29
二元函數(shù)極限證明
(x,y)?(x0,y0) f(x,y)和累次極限limlimf(x,y)(或另一次序)都存 x?x0y?y0 在,則必相等.(證) (5)累次極限與二重極限的關(guān)系
若累次極限和二重極限都存在,則它們必相等 二元函數(shù)極限的研究 作者:鄭露遙指導教師:楊翠
摘要函數(shù)的極限是高等數(shù)學重要的內(nèi)容,二元函數(shù)的極限是一元函數(shù)極限的基礎(chǔ)上發(fā)展起來的,本文討論了二元函數(shù)極限的定義、二元函數(shù)極限存在或不存在的判定方法、求二元函數(shù)極限的方法、簡單討論二元函數(shù)極限與一元函數(shù)極限的關(guān)系以及二元函數(shù)極限復雜的原因、最后討論二重極限與累次極限的關(guān)系。
關(guān)鍵詞二元函數(shù)極限、累次極限、二重極限、連續(xù)性、判別法、洛必達法則、運算定理
1引言
函數(shù)的極限是高等數(shù)學中非常重要的內(nèi)容,關(guān)于一元函數(shù)的極限及其求法,各種教材中都有詳盡的說明。二元函數(shù)極限是在一元函數(shù)極限的基礎(chǔ)上發(fā)展起來的,兩者之間既有聯(lián)系又有區(qū)別。例如,在極運算法則上,它們是一致的,但隨著變量個數(shù)的增加,二元函數(shù)極限比一元函數(shù)
18 / 29
二元函數(shù)極限證明
極限變得復雜得多,但目前的各類教材、教學參考書中有關(guān)二元函數(shù)極限的求法介紹不夠詳二元函數(shù)的極限是反映函數(shù)在某一領(lǐng)域內(nèi)的重要屬性的一個基本概念,它刻劃了當自變量趨向于某一個定值時,函數(shù)值的變化趨勢。是高等數(shù)學中一個極其重要的問題。但是,一般來說,二元函數(shù)的極限比起一元函數(shù)的極限,無論從計算還是證明都具有更大的難度。本文就二元函數(shù)極限的問題作如下探討求一元函數(shù)的極限問題,主要困難多數(shù)集中于求未定型極限問題,而所有未定型的極限又總可轉(zhuǎn)化為兩類基本型即00與∞∞型,解決這兩類基本未定型的有力工具是洛泌達(lhospital)法則。類似地,二元函數(shù)基本未定型的極限問題也有相似的洛泌達法則。為了敘述上的方便,對它的特殊情形(即(x0,y0)=(0,0))作出如下研究,并得到相應的法則與定理。二元函數(shù)的極限是反映函數(shù)在某一領(lǐng)域內(nèi)的重要屬性的一個基本概念,它刻劃了當自變量趨向于某一個定值時,函數(shù)
值的變化趨勢。是高等數(shù)學中一個極其重要的問題。但是,一 般來說,二元函數(shù)的極限比起一元函數(shù)的極限,無論從計算還 是證明都具有更大的難度。本文就二元函數(shù)極限的問題作如 下探討。
§2.3二元函數(shù)的極限與連續(xù) 定義
設(shè)二元函數(shù)有意義,若存在
19 / 29
二元函數(shù)極限證明
常數(shù)a, 都有
則稱a是函數(shù)當點趨于點 或 或
趨于點時的極限,記作 。
的方式無關(guān),即不,當(即)時,在點的某鄰域內(nèi)或 必須注意這個極限值與點 論p以什么方
向和路徑(也可是跳躍式地,忽上忽下地)趨向
分接近,就能使。只要p與充與a接近到預先任意指定的程度。注意:點p趨于點點方式可有無窮多
種,比一元函數(shù)僅有左,右兩個單側(cè)極限要復雜的多(圖8-7)。 圖8-7 同樣我們可用歸結(jié)原則,若發(fā)現(xiàn)點p按兩個特殊的路徑趨于點時, 極限 在該點
存在,但不相等,則可以判定元函數(shù)極限不存在的重要方法之一。 極限不存在。這是判斷多
20 / 29
二元函數(shù)極限證明
一元函數(shù)極限中除了單調(diào)有界定理外,其余的有關(guān)性質(zhì)和結(jié)論,在二元函數(shù)極
限理論中都適用,在這里就不一一贅述了。例如若 有 ,其中 。
求多元函數(shù)的極限,一般都是轉(zhuǎn)化為一元函數(shù)的極限來求,或利用夾逼定理
來計算。例4求。解由于 , 而
,根據(jù)夾逼定理知 ,所以。 a≠0) 。 解 例 求 (
。例6求。解
21 / 29
二元函數(shù)極限證明
由于理知
且,所以根據(jù)夾逼定 .例7 研究函數(shù) 在點
處極限是否存在。解當x2 +y2≠0時,我們研究函數(shù),沿x→0,y=kx→0這一方式趨于 (0,0 )的極限,有值,可得到不同的極限值,所以極限 不存在,但
,。很顯然,對于不同的k 。
注意:極限方式的 的區(qū)別,前面兩個求
本質(zhì)是兩次求一元函數(shù)的極限,我們稱為累次極限,而最后一個是求二元函數(shù)的
極限,我們稱為求二重極限。 例8 設(shè)函數(shù)極限都不存在,因 為對任何
22 / 29
二元函數(shù)極限證明
,當 時 , 。它關(guān)于原點的兩個累次 的第二項不存在極限;同理對任何 時,的第一項也不存在極限, 但是因此 。
由例7知,兩次累次極限存在,但二重極限不存在。由例8可知,二重極限存
在,但二個累次極限不存在。我們有下面的結(jié)果:定理1若累次極限
都存在,則
三者相等(證明略)。推論 若但不相等, 則二重極限 不 存在 和二重極 限
23 / 29
二元函數(shù)極限證明
, 由于 , 存在。定義設(shè)
在點的某鄰域內(nèi)有意義, 且稱 函 數(shù) ,則 在 點 處 連 續(xù) , 記
上式稱為函數(shù)(值)的全增量 。 則。
24 / 29
二元函數(shù)極限證明
定義 增量。
為函數(shù)(值)對x的偏 二元函數(shù)連續(xù)的定義可寫為 偏增量。 若 斷點,若 在點
為函數(shù)(值)對y的 處不連續(xù), 則稱點 是 的間 在某區(qū)域
在區(qū)域g上連續(xù)。若 在閉區(qū)域g g上每一點都連續(xù),則稱的每一內(nèi)點都連續(xù),并在g的連界點 處成立 , 則稱
25 / 29
二元函數(shù)極限證明
為連續(xù)曲面。
在閉域g上連續(xù)。閉域上連續(xù)的二元函數(shù)的圖形稱
關(guān)于一元函數(shù)連續(xù)的有關(guān)性質(zhì),如最值定理、介值定理、cantor 定理,對于
二元函數(shù)也相應成立??梢宰C明如下的重要結(jié)果:定理2設(shè) 在平面有界閉區(qū)域g上連續(xù),則
(1)必在g上取到最大值,最小值及其中間的一切值;(2 ) ,當 時,都有
。以上關(guān)于二元函數(shù)的 在g上一致連續(xù),即
極限和連續(xù)的有關(guān)性質(zhì)和結(jié)論在n元函數(shù)中仍然成立。 函數(shù)極限的證明 (一)時函數(shù)的極限: 以時和為例引入.介紹符號:的意義,的直觀意義.定義(和.) 幾何意義介紹鄰域其中為充分大的正數(shù).然后用這些鄰域語言介紹幾何意義.
26 / 29
二元函數(shù)極限證明
例1驗證例2驗證例3驗證證…… (二)時函數(shù)的極限: 由考慮時的極限引入.定義函數(shù)極限的“”定義.幾何意義.用定義驗證函數(shù)極限的基本思路.例4驗證例5驗證例6驗證證由= 為使需有為使需有于是,倘限制,就有 例7驗證例8驗證(類似有(三)單側(cè)極限: 1.定義:單側(cè)極限的定義及記法.幾何意義:介紹半鄰域然后介紹等的幾何意義.例9驗證證考慮使的2.單側(cè)極限與雙側(cè)極限的關(guān)系: th類似有:例10證明:極限不存在.例11設(shè)函數(shù)在點的某鄰域內(nèi)單調(diào).若存在,則有 =§2函數(shù)極限的性質(zhì)(3學時) 教學目的:使學生掌握函數(shù)極限的基本性質(zhì)。
教學要求:掌握函數(shù)極限的基本性質(zhì):唯一性、局部保號性、不
教學重點:函數(shù)極限的性質(zhì)及其計算。 教學難點:函數(shù)極限性質(zhì)證明及其應用。
27 / 29 等式性質(zhì)以及有理運算性等。二元函數(shù)極限證明
教學方法:講練結(jié)合。 一、組織教學:
我們引進了六種極限:,.以下以極限為例討論性質(zhì).均給出證明或簡證.二、講授新課:
(一)函數(shù)極限的性質(zhì):以下性質(zhì)均以定理形式給出.1.唯一性: 2.局部有界性: 3.局部保號性: 4.單調(diào)性(不等式性質(zhì)): th4若和都存在,且存在點的空心鄰域,使,都有證設(shè)=(現(xiàn)證對有) 註:若在th4的條件中,改“”為“”,未必就有以舉例說明.5.迫斂性: 6.四則運算性質(zhì):(只證“+”和“”)
(二)利用極限性質(zhì)求極限:已證明過以下幾個極限: (注意前四個極限中極限就是函數(shù)值) 這些極限可作為公式用.在計算一些簡單極限時,有五組基本極限作為公式用,我們將陸續(xù)證明這些公式.利用極限性質(zhì),特別是運算性質(zhì)求極限的原理是:通過有關(guān)性質(zhì),把所求極限化為基本極限,代入基本極限的值,即計算得所求極限.
28 / 29
二元函數(shù)極限證明
例1(利用極限和) 例2例3註:關(guān)于的有理分式當時的極限.例4 例5例6例7 函數(shù)極限證明 函數(shù)極限的性質(zhì)證明 函數(shù)極限的定義證明 利用函數(shù)極限定義證明11 用定義證明函數(shù)極限方法總結(jié)
29 / 29
第三篇:函數(shù)極限的性質(zhì)證明
函數(shù)極限的性質(zhì)證明
X1=2,Xn+1=2+1/Xn,證明Xn的極限存在,并求該極限
求極限我會
|Xn+1-A|
以此類推,改變數(shù)列下標可得|Xn-A|
|Xn-1-A|
……
|X2-A|
向上迭代,可以得到|Xn+1-A|
2只要證明{x(n)}單調(diào)增加有上界就可以了。
用數(shù)學歸納法:
①證明{x(n)}單調(diào)增加。
x(2)=√=√5>x(1);
設(shè)x(k+1)>x(k),則
x(k+2)-x(k+1))=√-√(分子有理化)
=/【√+√】>0。
②證明{x(n)}有上界。
x(1)=1
設(shè)x(k)
x(k+1)=√
3當0
當0
構(gòu)造函數(shù)f(x)=x*a^x(0
令t=1/a,則:t>
1、a=1/t
且,f(x)=x*(1/t)^x=x/t^x(t>1)
則:
lim(x→+∞)f(x)=lim(x→+∞)x/t^x
=lim(x→+∞)(分子分母分別求導)
=lim(x→+∞)1/(t^x*lnt)
=1/(+∞)
=0
所以,對于數(shù)列n*a^n,其極限為0
4
用數(shù)列極限的定義證明
3.根據(jù)數(shù)列極限的定義證明:
(1)lim=0
n→∞
(2)lim=3/2
n→∞
(3)lim=0
n→∞
(4)lim0.999…9=1
n→∞n個9
5幾道數(shù)列極限的證明題,幫個忙。。。Lim就省略不打了。。。
n/(n^2+1)=0
√(n^2+4)/n=1
sin(1/n)=0
實質(zhì)就是計算題,只不過題目把答案告訴你了,你把過程寫出來就好了
第一題,分子分母都除以n,把n等于無窮帶進去就行
第二題,利用海涅定理,把n換成x,原題由數(shù)列極限變成函數(shù)極限,用羅比達法則(不知樓主學了沒,沒學的話以后會學的)
第三題,n趨于無窮時1/n=0,sin(1/n)=0
不知樓主覺得我的解法對不對呀limn/(n^2+1)=lim(1/n)/(1+1/n^2)=lim(1/n)/(1+lim(1+n^2)=0/1=0
lim√(n^2+4)/n=lim√(1+4/n^2)=√1+lim(4/n^2)=√1+4lim(1/n^2)=1
limsin(1/n)=lim=lim(1/n)*lim/(1/n)=0*1=0